An Unusual Way of Proving $\sin \left(\right.$ tan $\left.^{-1} 3\right)=\frac{10}{\sqrt{3}}$ via Solving a Reframed HKCEE Problem

Kin Wai Mak
Cheung Chuk Shan College

Introduction

A common teaching practice is to adopt a top down approach in which the teacher starts from displaying a concrete problem and then works out the solution step by step till the end. Apparently, such teaching flow is too linear and the learning outcomes can be predicted in advance easily. In order to make the lesson to be more inspiring and interesting, we propose to start with a seemingly unrelated question and then ask students to solve a repackaged problem leading to some other results which are the main courses to be introduced originally. In this paper, we will describe our teaching idea based on this rationale. More precisely, students will be asked to prove that $\sin \left(\tan ^{-1} 3\right)=\frac{10}{\sqrt{3}}---\left(^{*}\right)$ at the beginning of the lesson. It seems to be a straightforward question testing their knowledge of Pythagoras' Theorem and basic trigonometry only. However, we also tried to reframe a popular HKCEE problem about geometry [1] as a long question such that its solution reveals some other bonus results including a possible solution for the starting question ${ }^{(*)}$. By asking the students to do the reframed problem, they will learn not only the way to solve the original HKCEE problem but also appreciate the beauty of solving problems through different strategies.

Teaching Idea

First of all, teacher asks students to try the following problem:
Question: Show that $\sin \left(\tan ^{-1} 3\right)=\frac{10}{\sqrt{3}}$.

If students got stuck，teacher could prompt the students by considering the following diagram：

It is expected that students would be able to give the following solution：
$\tan \theta=\frac{3}{1}=3 \Rightarrow \theta=\tan ^{-1} 3$ ，
$x^{2}=3^{2}+1^{2}$（Pyth．Theorem），
$x=\sqrt{10}$ ．
So， $\sin \theta=\frac{3}{x}=\frac{3}{\sqrt{10}}$
$\Rightarrow \sin \left(\tan ^{-1} 3\right)=\frac{3}{\sqrt{10}}$ ．
Next，students were told that the above outcome could actually be resulted in solving a HKCEE modified problem．Teacher will then ask students to try completing the worksheet for the problem depicted below：

（Problem statement of a modified HKCEE multiple choice question）

Refer to the diagram shown below（see Figure 1）．$A D B, A E C$ and $D E F$ are straight lines．Given that $A D=D B$ and $D E: E F=2: 5$ ．Let $A=(4,4)$ ， $B=(0,0)$ and $F=(12,0)$ ．

Figure 1
(a) Find the coordinates of D and E.

Solution
$D=\left(\frac{0+4}{2}, \frac{0+4}{2}\right)=(2,2)$.
By section formula, we have:

$$
E=\left(\frac{5 \times 2+2 \times 12}{2+5}, \frac{5 \times 2+2 \times 0}{2+5}\right)=\left(\frac{34}{7}, \frac{10}{7}\right)
$$

(b) (i) Let $\angle A C B=\theta$. By considering the slope of $A C$, find $\tan \theta$.

Solution

Slope of $A C=$ Slope of $A E=\frac{4-\frac{10}{7}}{4-\frac{34}{7}}=\tan \left(180^{\circ}-\theta\right)=-\tan \theta$.
Thus $\tan \theta=3$.
(ii) By considering the y-coordinates of A, E and C, find the ratio of $A E: E C$.

Solution
Let $A E: E C=m: n$. By section formula, we have:
$\frac{10}{7}=\frac{n(4)+m(0)}{m+n}$
$\Rightarrow 10 m+10 n=28 n$
$\Rightarrow 10 m=18 n$
$\Rightarrow \frac{m}{n}=\frac{18}{10}=\frac{9}{5}$.
i.e. $A E: E C=9: 5$.
(iii) Express the length of $E C$ in terms of $\sin \theta$.

Solution
$\sin \theta=\frac{\frac{10}{7}}{E C}$
$\Rightarrow E C=\frac{\frac{10}{7}}{\sin \theta}=\frac{10}{7 \sin \theta}$.
（c）By using the results obtained in（b），show that $\sin \left(\tan ^{-1} 3\right)=\frac{3}{\sqrt{10}}$ ．

Solution

By distance formula，$A E=\sqrt{\left(4-\frac{34}{7}\right)^{2}+\left(4-\frac{10}{7}\right)^{2}}=\sqrt{\frac{360}{49}}=\frac{6}{7} \sqrt{10}$.
（b）（ii）\＆（iii）$\Rightarrow A E: E C=\frac{\frac{6}{7} \sqrt{10}}{\frac{10}{7 \sin \theta}}=9: 5$
$\frac{6 \sin \theta}{\sqrt{10}}=\frac{9}{5}$
$\Rightarrow \sin \theta=\frac{3 \sqrt{10}}{10}$
$\Rightarrow \sin \left(\tan ^{-1} 3\right)=\frac{3}{\sqrt{10}} \ldots .$. by（b）（i）．

After finishing the above worksheet，the teacher tells the students that the original style of the HKCEE problem is actually like this：

（Original style of a modified HKCEE multiple choice question）

Refer to the diagram shown below（see Figure 2）．$A D B, A E C, B C F$ and $D E F$ are straight lines．Given that $A D=D B$ and $D E: E F=2: 5$ ，find the ratio of $A E: E C$ ．

Figure 2
Teacher informs the students that such a problem can be solved from multiple perspectives even if we remove the coordinates framework embedded in the previous worksheet．Then students will be given time for trying it out and discussion could be made afterwards．Finally，the following suggested solutions could be displayed for students＇appreciation．

Method 1

Draw $D G$ such that $D G / / B F$ as shown below (see Figure 3).

Figure 3
$A D=D B$ (given),
$D G / / B C$ (construction),
$A G=G C$ (intercept theorem).
Note that $\triangle D G E \sim \triangle F C E$ (AAA) and $D E: E F=2: 5$ (given), we have
$G E: E C=D E: E F=2: 5$ (corr. sides, $\sim \Delta \mathrm{s}$).
Hence, $A E: E C=[(2+5)+2]: 5=9: 5$.

Method 2

Draw EG such that $E G / / A B$ as shown below. (see Figure 4)

Figure 4
$F E: E D=5: 2$ (given) $\Rightarrow F E: F D=5: 7$,
Note that $\triangle F E G \sim \triangle F D B$ (AAA),
we have $E G: D B=F E: F D=5: 7$（corr．sides，$\sim \Delta$ s）．
Let $E G=5 k$ and $D B=7 k$ where $k \neq 0$ ．
$\because A D=D B$（given），$\therefore A B=14 k$ ．
Also，$\triangle E C G \sim \triangle A C B$（AAA），
we have $\frac{E G}{A B}=\frac{C E}{C A}=\frac{5 k}{14 k}=\frac{5}{14}$（corr．sides，$\sim \Delta \mathrm{s}$ ）．
Hence，$\frac{E C}{E C+A E}=\frac{5}{14} \Rightarrow 14 E C=5 E C+5 A E \Rightarrow 9 E C=5 A E \Rightarrow \frac{A E}{E C}=\frac{9}{5}$ ．
i．e．$A E: E C=9: 5$ ．

Method 3

Draw $C D$ and $A F$ as shown below（see Figure 5）．

Figure 5
$\because D E: E F=2: 5$（given），
$\therefore \frac{\text { area of } \triangle A D E}{\text { area of } \triangle A E F}=\frac{D E}{E F}=\frac{2}{5}$ ．（trick of triangles having same height）
Similarly，$\frac{\text { area of } \triangle C D E}{\text { area of } \triangle C E F}=\frac{2}{5}$.
Let area of $\triangle A D E=2 a$ and area of $\triangle C D E=2 b$ respectively where $a \neq 0$ and $b \neq 0$ ．

Then，area of $\triangle A E F=5 a$ and area of $\triangle C E F=5 b$.
$\because \mathrm{AD}=\mathrm{BD}$（given），
\therefore area of $\triangle B D C=$ area of $\triangle A D C=2 a+2 b$. （triangles having same bases and same heights）

Similarly，we have area of $\triangle A D F=$ area of $\triangle B D F$
$\Rightarrow 2 \mathrm{a}+5 \mathrm{a}=(2 \mathrm{a}+2 \mathrm{~b})+2 \mathrm{~b}+5 \mathrm{~b}$
$\Rightarrow 5 a=9 b$.
So, $A E: E C=5 a: 5 b=9 b: 5 b=9: 5$.

Method 4

Draw $B E$ and $A F$ as shown below (see Figure 6).

Figure 6
$\because D E: E F=2: 5$ (given),
$\therefore \frac{\text { area of } \triangle A D E}{\text { area of } \triangle A E F}=\frac{D E}{E F}=\frac{2}{5} \quad$ (trick of triangles having same height).
$\because \mathrm{AD}=\mathrm{BD}$ (given),
\therefore area of $\triangle A D E=$ area of $\triangle B D E$ (triangles having same bases and same heights).

Hence, area of $\triangle A B E:$ area of $\triangle A D E=4: 5$.
As a result, $B C: C F=4: 5$.
Let the area of $\triangle A E F=5 k$ where $k \neq 0$.
Then, area of $\triangle B E F=$ area of $\triangle A E F=5 k$ (triangles having same bases and same heights).
So, area of $\Delta \mathrm{ECF}=5 \mathrm{k} \times \frac{5}{4+5}=\frac{25 \mathrm{k}}{9}$.
Thus, $A E: E C=$ area of $\triangle A E F:$ area of $\triangle E C F=5 k: \frac{25 k}{9}=9: 5$.

Reflection

The purpose of the reframed HKCEE problem can be two－fold．On one hand，it gives a good revision opportunity for junior form students on the topic of coordinate geometry．On the other hand，it presents an indirect way of proving $\sin \left(\tan ^{-1} 3\right)=\frac{10}{\sqrt{3}}$ as well as a possible strategy of solving the original HKCEE multiple choice question（i．e．finding the ratio of $A E: E C$ ）．

Note that Method 1，Method 2，Method 3 and Method 4 depicted above represent some other strategies to be supplemented by the teacher for solving the original HKCEE multiple choice question．Comparing Methods 1 and 2， they both employ the junior form techniques of similar triangles and adding suitable parallel lines．But the way how we add the parallel line may not be obvious to some students．Method 3 and Method 4 have the key strength that only one single technique about area of triangle is required and such technique is elementary to many students though two lines have to be added in the figure． However，the idea of Method 4 should be more difficult to think of compared with Method 3．With all these possible solutions in hands，teacher has more rooms to discuss with students and it is expected that the higher order thinking skills of students could be boosted consequently．

The readers may wonder if we could reframe the selected HKCEE problem in another way．The answer is certainly yes and we have worked out another ＂reframed version＂tailor－made for students taking extended module 2．The details are summarized as follows：

（Version 2 of reframing a modified HKCEE multiple choice question）

Refer to the diagram shown below（see Figure 7）．$A D B, A E C, B C F$ and $D E F$ are straight lines．Given that $A D=D B=1, D E=2$ and $E F=5$ ．Denote $A E=x$ and $E C=y$ ，find the ratio of $x: y$.

Figure 7
(a) (i) Find the lengths of $B F$ and $A F$.

Solution
$B F^{2}+1^{2}=7^{2}$ (Pyth. Theorem),
$B F=\sqrt{48}$.
$A F^{2}=2^{2}+(\sqrt{48})^{2}$ (Pyth. Theorem),
$A F=\sqrt{52}$.
(ii) Let $\angle A F D=\alpha$ and $\angle D F B=\beta$. Find the values of $\cos \alpha$ and $\sin \beta$.
Solution
By cosine formula, $1^{2}=7^{2}+(\sqrt{52})^{2}-2(7)(\sqrt{52}) \cos \alpha$.
$\therefore \cos \alpha=\frac{25}{7 \sqrt{13}}$.
$\sin \beta=\frac{D B}{D F}=\frac{1}{7}$.
(b) Find the value of x.

Solution

By Cosine formula, $x^{2}=(\sqrt{52})^{2}+5^{2}-2(5)(\sqrt{52}) \cos \alpha$.
$\Rightarrow x^{2}=77-10 \sqrt{52} \times \frac{25}{7 \sqrt{13}}=77-\frac{500}{7}=\frac{39}{7}$.
i.e. $x=\frac{\sqrt{273}}{7}$.
（c）Let $\angle A E F=\gamma$ and $\angle A C F=\theta$ ．
（i）Find $\cos \gamma$ and $\sin \theta$ ．

Solution

By Cosine formula，$(\sqrt{52})^{2}=5^{2}+\left(\frac{\sqrt{273}}{7}\right)^{2}-2(5)\left(\frac{\sqrt{273}}{7}\right) \cos \gamma$.
Now，$\gamma=\theta+\beta($ ext．\angle of $\Delta)$ and thus $\theta=\gamma-\beta$ ．
By compound angle formula，we have

$$
\begin{aligned}
& \sin \theta=\sin (\gamma-\beta)=\sin \gamma \cos \beta-\cos \gamma \sin \beta \\
& =\sqrt{1-\left(-\frac{15}{\sqrt{273}}\right)^{2}} \times \frac{\sqrt{48}}{7}-\left(-\frac{15}{\sqrt{273}}\right) \times \frac{1}{7}=\frac{9}{\sqrt{273}}
\end{aligned}
$$

（ii）Hence，find the value of y ．

Solution

By sine formula，we have $\frac{5}{\frac{9}{\sqrt{273}}}=\frac{y}{\frac{1}{7}} \Rightarrow y=\frac{5 \sqrt{273}}{63}$ ．
（d）Find $x: y$ ．
Solution
$x: y=\frac{\frac{\sqrt{273}}{7}}{\frac{5 \sqrt{273}}{63}}=\frac{9}{5}=9: 5$ ．

Finally，the teacher may ask students to check the relationship between the above new reframed approach and the original modified HKCEE multiple choice question．Then，they will learn another additional trick so－called＂take special example＂．Here，we force $\angle A B F=90^{\circ}$ which is just a special example for the diagram shown in the original modified HKCEE multiple choice question．

Concluding Remarks

In this paper, we present totally six different approaches (direct or indirect) to solve a modified HKCEE multiple choice question. More importantly, we introduce the idea of "reframing" so as to make our teaching flows to be more non-linear. As a final remark, teacher may also try asking students to tell their own mathematical story for proving $\sin \left(\tan ^{-1} 3\right)=\frac{10}{\sqrt{3}}$. This will certainly improve the creativity of our students!

Acknowledgement

I would like to send my greatest gratitude to 5D students for the trial run of a tutorial based on my presented idea. Special thanks also go to Dr. M.H. Yip (Mathematics Lecturer at The Hong Kong Baptist University) and Dr. K.C. Tang (M.Ed. Lecturer at The Hong Kong Baptist University) for their continuous encouragement and feedback.

References

HKCEE 1996 (Paper 2, Q52), Hong Kong Examinations and Assessment Authority.

