Integrating History of Mathematics in Teaching and Learning Logarithm: A Case Study

Chung Wing Hong Patrick Po Leung Kuk Celine Ho Yam Tong College

Usually, logarithm is introduced to students by its definition "If $x = 10^{y}$, then $y = \log x$ ". Although it is easy and straight forward for students to follow, most of students do not know why they need to learn logarithm and what is the importance of logarithm in mathematics. By reference to the history of development of logarithm, I had tried to implement a student-centered exploratory activity for the students in learning the concept and properties of logarithm. The lesson started from the following question:

"We know that if $10^x = 1$, then x = 0; similarly if $10^x = 10$, then x = 1. But if $10^x = 2$, what will be the value of x? Moreover, how about if $10^x = 3$, $10^x = 4$, etc. ... Can you solve these exponential equations?

Few students said that it is impossible to solve these equations, as it did not make sense for $10 \times 10 \times 10$... for *x* times to be equal to 2 or 3! However some students recall that they have learne $10^{\frac{1}{2}} = \sqrt{10} \approx 3.16$, hence they tried to observe the following pattern and guess that the values of *x* should be something between 0 and 1:

x	0	?	?	0.5	?	 1
10^{x}	1	2	3	3.16	4	 10

At that moment the story of the mathematician John Napier and the idea of logarithm were introduced to them:

"It is difficult to find the values of x in the table above, however a mathematician called John Napier, who was born 500 years ago, had found the values of x above, without the help of computer or calculator! Finally he made it and recorded his finding into a table called Logarithm Table"

Students were curious at that moment. Afterwards a worksheet was given to them (refer to Appendix I). Since it seemed to be too difficult for students to understand the way to find the values of log 2 and log 3 at the beginning, therefore their values were given to students and I told them the values of log 2 and log 3 would be found later. Then the students were guided to find the values of log 4, log 5, etc..., as they could still remember the law of indices they had learnt in last year, they could follow the guidelines in the worksheet successfully and use the similar way to find the value of log 6 (refer to Figure 1).

Figure 1: Students followed the guideline to find log 4, log 5 and log 6

And we can see that the students were applying the properties of logarithm (i.e. $log(M \times N) = logM + logN$ and $log(M \div N) = logM - logN$) in the worksheet, but actually those properties were not "officially" taught to them. Students had just observed the relationship between exponential form and logarithmic form and deduced the way to manipulate logarithm by themselves. After students had found the value of log 6, they were asked to find the value of log 7, log 8 and log 9. Most of them could find the values of log 8 and log 9 successfully, but they were frustrated in finding the value of log 7 (refer to Figure 2). Later they found that none of their classmate could find the value of log 7, and then I asked them a question:

"Why is it so difficult to find the value of log 7? What is the different among the number 7 and other numbers such as 6, 8 and 9?"

Students were asked to express their finding in the worksheet. Most of

them stated that 7 could not be expressed as a product of 2, 3, 4, ... and some of them could point out that 7 is a prime number (refer to Figure 3). Finally they understood why it was so difficult to find the values of log 2 and log 3, since 2 and 3 were also both prime numbers (but not log 5 since log 5 could be expressed as $log(10 \div 2) = log 10 - log 2$).

Figure 2: Students tried to find log 7, log 8 and log 9

Question:	Can you find the value of $\log_{10} 7$? If not, can you explain why the value of $\log_{10} 7$ is so difficult to find?
-	Because 7 capit trided by 23,455,6.
Question:	Can you find the value of $\log_{10} 7$? If not, can you explain why the value of $\log_{10} 7$ is so difficult to find?
-	No, because 7 is not a product of other numbers (beside 1 and 7) that means \$\$ 1",

Figure 3: Students explained why it is difficult to find log 7

After the short summary, students were asked to find the values of log 11, log 12, log 13 ... to log 30. During the task, most of the students had discovered the last properties of logarithm, which is $\log M^{n} = n \log M$ (refer to

Figure 4). Although there were some mistakes in presentation (e.g. express log 3^3 into $(\log 3)^3$), it was glad to see that students could discover and apply the properties of logarithm by themselves.

$\log_{10} 11 =$	$\log_{10} 12 = \log_{10} (2 \times 2 \times 3)$	$\log_{10} 13 =$
	=2/ og . 2 + log . 3	
	= 0,30 (f 0.30 + 0.41)	
	= 1.079	
log ₁₀ 14 =	log10 15 = (og10 (3×5)	$\log_{10} 16 = \log_{10} \left(\mathcal{Y}^{4} \right)$
	= log = 3+ log = 5	\$109,0>)
	= 0,AT(+0. 69)	=0.501×1
	= 1,176	- 1, 207
log ₁₀ 17 =	$\log_{10} 18 = h_1(2 \times 3 \times 3)$	log ₁₀ 19 =
	=1.g. 2+2log 3	
	=5.351 + 0.41 (+0.47)	
	- (,) >	
$\log_{10} 20 = \log_{10} (2225)$	log ₁₀ 21 =	$\log_{10} 22 =$
alogin 2 + logins		•
=>x0.301+0.69)		
=].30]		
log ₁₀ 23 =	log10 24 = log (2012×1013)	$\log_{10} 25 = \left(\log_{10} (5 \times 5)\right)$
	=31 gm >" + log. 3	- Hogne 5 1 594 + 1.69
4	> 0,30123+	= 1.39\$
	= (.3%	- (2.270
log ₁₀ 26 =	log10 27 = / og10 33	log ₁₀ 28 =
	= ([⁰ _{0,0}]) =	
	= 0.477 + 0.4740A	n.
	= 1.451	
log ₁₀ 29 =	$\log_{10} 30 = \log(3\times 3\times 5)$	
	= log 10 2+ log 103+ log 10	\$
	= 0.30[+0.47]+1.6]	
	~ [.41]	

Figure 4: Students tried to find different logarithm values

When students became familiar with the properties of logarithm, the logarithm table was introduced to the students formally and straightforwardly, and they learnt how to look for a logarithm value in the table. At the same time the bibliography of Napier and the importance of logarithm table were further introduced to the students:

"Napier had a great interest in astronomy, which led to his contribution to mathematics. He was involved in research that required lengthy and time consuming calculations of very large numbers. Once the idea came to him that there might be a better and simpler way to perform large number calculations, Napier focused on the issue and spent twenty years perfecting his idea. The result of this work is what we now call logarithms..."¹

Students were amazed why Napier could keep working on logarithm for over twenty years (they claimed that even they loved computer games, they would not spend 20 years on the games!). They were impressed by the composure and enthusiasm of Napier. Afterwards more practices had been given to the students to find different values of logarithm (refer to Figure 5).

¹ Full text is available at <u>http://math.about.com/library/weekly/blbionapier.htm</u>.

Sup	pose $\log_{10} 2 \approx 0.3010$, $\log_{10} 3 \approx 0.4771$, $\log_{10} 7 \approx 0.8451$ and	l lo	g ₁₀ 11 :	≈ 1.041	4.	
Try	to find the below values by yourselves and check whether the value	s you	found	are sa	me as	
the	values in the Table of LOGARITHMS or not!					
(a)	$\log_{10} 1.1 = \partial g_{yy}(1) \neq 9\rangle$ = $\log_{10} 1-1 $			1 2 3 4 5 5 5		
	= 0.0914	Ro.	•	1	3	
(b)	$\log_{10} 1.21 = l_{\sigma Q_{re}} \left(\frac{1}{2} + \frac{2}{3} \right)$	10		0043	0800	0
		13	0793	0508	0864	10
	-210310111	13	1139	1173	1206	11
	$\approx 2(0.0414)$		1401	3492	-8-8	Ľ
(c)	$\log_{10} 1.5 = 1.5 (2 \times 2)$	īŠ	3041	2008	3095	1
(0)	10610 1.0 - 10310 (3 -2)	17	2304	2330	\$355	3
	$= 1 \sigma \eta_{ya} 3 - 1 \sigma \eta_{ya} 2$	19	2788	2810	2833	5
	2 6.477-0.300	20	3010	3032	3054	
	= 0.1761	23	3222	3243	3203	1
● ^{se} (d)	$\log_{10} 1.92 = \log_{10} (3 \times 2^6 + 10^6)$	23	36170	3636	3655	3
	$= \lim_{n \to \infty} \frac{2\pi}{n} \frac{1}{n} \frac{n}{n} \frac{1}{n} \frac{1}{n}$	24	3802	3020	3838	3
	- 10g10 > -16/092 -210910	2	3979	3997	4183	4
	= 6.4771 + 6(6.300) - 2(1)	7	4314	4330	4340	4
	= (1,283)	20	4624	4039	4054	4
€ *(e)	$\log_{10} 2.31 = \left[g_{\mu} \left(2 \sqrt{2} x T_{\mu} \right) \right] = (h^2)^2$	30	4771	4786	4800	4
	Jie Lyn XII Sto J		1 2 2 2 4 3	4.54	1 1 / H & - 4 1	
-	$= \log_{10} 3 + \log_{10} 7 + \log_{10} [1 - 2(1)]$					
	70,4771+0,8451+1.0414-2					
	= 0.3636					

Figure 5: Work on the logarithm table by students

After finding the values of log 1.21, log 1.5, log 1.92, etc., students had more practices on the property $log(M \div N) = logM - logN$. On the other hand lots of students found that the value of log 1.92 they evaluated (which was 0.2831) was slightly different from the value stated in the logarithm table (which is 0.2833). They were frustrated since they had verified again and again and found that there were no errors in their calculation. After a short in-class discussion, some students discovered that accuracy of log 2, log 3,... given in the worksheet was not good enough (they had used calculator to clarify their finding). Then I introduced the work of another mathematician Henry Briggs, who also worked on logarithm with Napier 500 years ago. And then students were asked to follow the way of Briggs to find the value of log 2 by themselves (refer to Figure 6):

```
(a) Find the value of 2^{10} and express your answer in scientific notation (i.e. in the form a \times 10^N,
     where 1 \le a < 10).
        2^{10} = 1024
              = 1.024 × 103
(b) By using the result in (a), try to find the approximate value of \log_{10} 2.
     (Hints: \log_{10} 1.024 \approx \log_{10} 1.000 \approx 0.)
        210=1.024×103
   10910210=10910(1.024×103)
 10/09102= 109101.024+ 10910 103
  10/09102× 0+3
      10910220.3
(c) Given that 2^{100} = 1267650600228229401496703205376 (which is a 31-digit number), try to
     find a better approximation of value of log<sub>10</sub> 2.
      loq_{10}2^{100} = loq_{10}(1.2677 \times 10^{30})
    |00|_{oq_{10}} 2 = |oq_{10}| \cdot 2677 + |oq_{10}| 0^{30}
|00|_{oq_{10}} 2 \approx |oq_{10}| \cdot 6 + 30
    100 logio 2 ≈ 4 logio 2-1+30
      96/09102 = 29
         100102 = 0.302
```


Later students knew that Briggs had found the value of $2^{10000000000000}$ (which is a 30102999566399-digit number) in order to find a precise approximation of log 2 = 0.30102999566398, they said that they could not believe it! They could not imagine how Briggs found the value of $2^{1000000000000}$ 500 years ago, without using computer or calculator. On the other hand some students were inspired and continued to work on finding the values of log 3 and log 7 (refer to Figure 7):

$$3^{10} = 59049 = 5.9049 \times 10^{4}$$

$$109^{10} 3^{10} = 109^{10} (5.9049 \times 10^{4})$$

$$10 \ 109^{10} 3 = (09^{10} 5.9049 + 4)09^{10} 10$$

$$10 \ 109^{10} 3 = 109^{10} 5.9049 + 4$$

$$10 \ 109^{10} 3 = 109^{10} 6 + 4$$

$$10 \ 109^{10} 3 = 109^{10} 2 + 109^{10} 3 + 4$$

$$10 \ 109^{10} 3 = 109^{10} 2 + 4$$

$$7^{10} = 2.825 \times 10^{8}$$

$$10 \ 109^{10} 7 = 109^{10} (2.825) + 8 \ 109^{10} 10$$

$$10 \ 109^{10} 7 = 109^{10} (2.825) + 8 \ 109^{10} 10$$

$$10 \ 109^{10} 7 = 109^{10} 3 + 8$$

$$10 \ 109^{10} 7 = 109^{10} 3 + 8$$

$$10 \ 109^{10} 7 = 8.478$$

Figure 7: Students found the approximation of log 3 and log 7 respectively

After the activity students were asked to complete some exercise in the textbook. All of them could finish the exercise without major problems. Although there was still some presentation error in their works, such as log 27 = $(\log 3)^3 = 3 \log 3$ and $\log 2^{x+1} = x + 1 \log 2$, it could see that students had learnt the properties of logarithm and applied them successfully. Throughout the learning activity, the history of development of logarithm had been integrated into the activity, but it was not the whole picture of the development of logarithm. Actually Napier had used a geometric-kinematic scheme to obtain a well definition of logarithm (Katz, 1986, 1995), but it had not been introduced in the lesson, because it involved abstract concept about manipulation of arithmetic and geometric sequences, which was quite difficult to be followed by secondary four students. In order to facilitate better understand of students about the invention and development of logarithm, the works from Briggs in Arithmetica Logarithmica (published in 1624) was used instead in the learning activity. According to Lam (2011), Briggs took the square of 2 to get the value of 2^2 , and then took the square again to get 2^4 , 2^8 and finally multiple the result by 2^2 to find the value of 2^{10} . He continued to find the values of 2^{100} , 2^{1000} and

2¹⁰⁰⁰⁰ by the similar way and the result was shown on the table in the fifth chapter of *Arithmetica Logarithmica* as below (refer to Figure 8):

[A] 1 2	0 1	
4	2	1
16	4	2 First Tetrad
256	8	3
1024	10	4
10,48576	20	7
109,9511627776	40	13 Second Tetrad
12089,25819,61463	80	25
12676,50600,22823	100	31
16069,38044,25899	200	61
25822,49878,08685	400	121 Third Tetrad
66680,14432,87940	800	241
10715,08607,18618	1000	302
11481,30695,27407	2000	603
13182,04093,43051	4000	1205 Fourth Tetrad
17376,62031,93695	8000	2409
19950,63116,87912	10000	3011
	Indices	Number of places

Figure 8: The work of Briggs on finding the value of 2^{10000}

Eventually Briggs found that $2^{1000000000000}$ is a 30102999566399-digit number, and it helped him to find a nice approximation of log 2:

 $\begin{array}{rcl} 2^{100000000000} &=& a \times 10^{30102999566398} \quad (\text{where } 1 \le a < 10) \\ \log 2^{1000000000000} &=& \log \left(a \times 10^{30102999566398} \right) \\ 100000000000000 \log 2 &=& \log a + \log 10^{30102999566398} \\ 100000000000000 \log 2 &=& \log a + 30102999566398 \\ \log 2 &=& \frac{\log a}{1000000000000} + 0.30102999566398 \\ \therefore \ \log 2 \approx 0.30102999566398 \end{array}$

This method only involves scientific notation and basic properties of logarithm, and they are easy to be understood by students. On the other hand, by finding the square root of 10, and then taking square root of the result again and again ... we can get the values of $10^{\frac{1}{2}}$, $10^{\frac{1}{4}}$, $10^{\frac{1}{8}}$ and use these values to find the approximation of log 2, and it is the method used to create logarithm table in 17^{th} century (Cho, 2010). The detail is as follows:

$$10^{\frac{1}{2}} \approx 3.16228$$
, $10^{\frac{1}{4}} \approx 1.77828$, $10^{\frac{1}{8}} \approx 1.33352$, $10^{\frac{1}{16}} \approx 1.15478$
 $10^{\frac{1}{32}} \approx 1.07461$, $10^{\frac{1}{64}} \approx 1.03663$, $10^{\frac{1}{128}} \approx 1.01815$, $10^{\frac{1}{256}} \approx 1.00904$

Let $2=10^{\frac{1}{4}} \times x_1$ then we have $x_1 = 2 \div 10^{\frac{1}{4}} \approx 1.1246$; let $x_1 = 10^{\frac{1}{32}} \times x_2$ then we have $x_2 = x_1 \div 10^{\frac{1}{32}} \approx 1.04659$; let $x_2 = 10^{\frac{1}{64}} \times x_3$ then we have $x_3 = x_2 \div 10^{\frac{1}{64}} \approx 1.00961$; let $x_3 = 10^{\frac{1}{256}} \times x_4$ then we have $x_4 = x_3 \div 10^{\frac{1}{256}} \approx 1.00450$; repeating the process to the n^{th} step and x_n will approach to 1. Therefore $2 = 10^{\frac{1}{4}} \times 10^{\frac{1}{32}} \times 10^{\frac{1}{64}} \times 10^{\frac{1}{256}} \times ... = 10^{\frac{1}{4} + \frac{1}{32} + \frac{1}{64} + \frac{1}{256} + ...} \approx 10^{\frac{77}{256}}$. And finally we have $\log 2 \approx \log 10^{\frac{77}{256}} = \frac{77}{256} \approx 0.3$. (Sum up more terms in the series to find a better approximation of log 2.)

All the works above had been showed to the students after the activity, and it seemed that history of mathematics could facilitate a comprehensive understanding of students in logarithm. Indeed, Fried (2008) states history can play a part in teaching and learning without altering the focus of our mathematics teaching, and it can be achieved by selecting suitable content from the history. Furthermore, Jankvist (2009) states that the manners in which the history of mathematics may be used in mathematics teaching may be classified into three major categories of approaches:

Illumination	The teaching and learning is supplemented by
approach:	historical information. It will be usually appeared
	as "isolated factual information" such as
	biographies, time charts and famous problems.
Modules approach:	The historical content is collected as a package which is narrowly focused on a small topic, with strong ties to the curriculum.
History-based approach:	It includes an account of historical data, a history of conceptual developments, or something in between.

Teachers can use different approaches based on their teaching objective: history-as-a-tool or history-as-a-goal (Jankvist, 2009). Obviously history-as-a-tool modules approach had been adopted in the activity. However Jankvist highlights that there is no clear-cut between different approaches and also there are various combinations of "how" and "why" to use history in mathematics education (refer to Figure 9):

Figure 9: The six possible connections between "how" and "why" to use history in mathematics education

By using the above framework, we can obtain a clear vision and aim to apply history in mathematics teaching and learning. On the other hand, Favuel (1991) states some reasons that have been advanced for using history in mathematics education, for example:

- Helps to increase motivation for learning
- Gives mathematics a human face
- Showing pupils how concepts have developed helps their understanding
- Changes pupil perceptions of mathematics
- Comparing ancient and modern establishes value of modern techniques
- Provides opportunities for investigations
- Pupils derive comfort from realizing that they are not the only ones with problems
- Encourages quicker learners to look further
- Helps to explain the role of mathematics in society

Can the above advantages be achieved? After the lesson I had asked the students to express their opinions on integrating historical content in learning logarithm. Here are some positive feedbacks from the students (refer to Figure 10). Lots of students pointed out that story of mathematics history was

interesting and help them understand the concept of some topics in mathematics (logarithm in this case). As Favuel mentioned above, history of mathematics can show how mathematics concepts have developed and hence helps the understanding of students. At the same time, the attitude of students in learning mathematics has been improved. They showed respect to the mathematicians such as Napier and Briggs and also their works on logarithm, and it motivated students to participate in learning activity proactively.

Are stories of mathematicians and history of mathematics helpful for your learning in mathematics? Please express your opinion briefly. 你認為數學歷史及數學家們的故事對你學習數學有沒有幫助?試簡述你的看法 stories of mathematicians and for my learnh.a ìн mathemat Theories formula NY A don't invent the LP. tler formula nohradows. 对教堂的興趣、當聽到 12 无力能 65 - 面 在 搬餐將加上歷史加放事 可以令我能夠更容易記得 易入牖。 以上

Figure 10: Some positive feedbacks from students

Meanwhile some negative feedbacks were given (refer to Figure 11). A student pointed out that the method used by Briggs in calculating logarithm was out-of-dated (Indeed Euler had designed an algorithm to find the value of log 2 (Sandifer, 2005), and it was more advanced). Few students also stated that the story of mathematics history was neither related to calculation nor examination.

Are stories of mathematicians and history of mathematics helpful for your learning in mathematics Please express your opinion briefly. 你認為數學歷史及數學家們的故事對你學習數學有沒有幫助?試管过你的看法

Are stories of mathematicians and history of mathematics helpful for your learning in mathematics? Please express your opinion briefly.
你認為數學歷史及數學家們的故事對你學習數學有沒有帮助?試簡述你的看法。 沒有,因為跟考試沒有关係,而且学習了也跟試算沒有

Figure 11: Some negative feedbacks from students

Actually the negative feedbacks above can be expected. Siu (2007) has pointed out some unfavorable factors to use history in teaching and learning mathematics, such as history of mathematics is not "mathematics", it cannot improve the student's grade in tests and examination, and students may not have enough general knowledge on culture to appreciate it. Although there are lots of concerns about using history in teaching mathematics, Siu still believes that integrating mathematics history in teaching and learning can provide a positive reinforcement on the affective side rather than cognitive side of students in mathematics. Actually Siu has already stated the similar point of view:

"In classes where history of mathematics is made use of, students like the subject more, but they do not necessarily perform better in the tests. One can argue that this may be an indication of a gap between what is taught and learnt and what is being assessed. But still, one cannot deny the possibility that students do not learn better with the addition of a historical dimension." (Siu 2007, p.276)

For instance, in 1978, Siu has already published a book to encourage students to study mathematics by referring to the history of mathematics (Siu, 1978). Moreover in 1998, International Commission on Mathematics Instruction (ICMI) has conducted a study on integrating history of mathematics in the classroom, and it was reported by Fauvel and Maanen (2000) which is by far the most comprehensive, extensive and rigorous publication in the field. Their study provides the framework and positive outcomes of integrating history in mathematics education.

Last but not least, mathematics is philosophical in its nature, but it does not mean that we must adopt a philosophical approach for every second in mathematics classroom. According to the natural way the human minds develop, Egan (1997) proposes the theory of educated mind with five kinds of understanding of the human, which are somatic, mythic, romantic, philosophical and ironic. Although the theory of educated mind are based on the study of cultural and linguistic history, Tang (2005, 2006) shows the possibilities of using mathematics history to facilitate different kinds of understanding of students in mathematics. By using the stories of Napier and Briggs, it can facilitate students' romantic understanding in logarithm. The followings are some characteristics of Romantic understanding: 1. the limits of reality and the extremes of experience; 2. transcendence within reality; 3. humanized knowledge; and 4. romantic rationality. And the central defining features of romantic understanding are the mixture of the mythic with the rational (Tang, 2006). Recall to the learning activity of logarithm, students had tried and tried again in order to find a better approximation of log 2, log 3 and so on. They learnt the concept and properties of logarithm in a humanized way, and they also experienced in pursuing limit and transcendent qualities. In the activity, the stories and works of Napier and Briggs were presented as "myth" (Napier had spent over 20 years on logarithm, Briggs had found a 30102999566399-digit number to find log 2) rather than "historical facts", and it can facilitate better romantic understanding of the students. With the adequate practices, it is believed that students can proceed to philosophical understanding (including instrumental and relational understanding) in logarithm at the same time.

Usually, there is an overt focus on calculation skills and routine learning, with drills and practice being central to the process of teaching and learning mathematics. However, mathematics is not only consisting of calculation, problem -solving and logical thinking. As Professor Siu Man Keung states that - "Mathematics is a cultural heritage". By exploring the humanistic aspects of mathematics, it is believed that both students and teachers can appreciate mathematics as a cultural-human endeavor, broaden the horizon in mathematics teaching and learning, and finally develop a positive attitude towards mathematics.

Reference:

- Briggs, H. (1624). Arithmetica Logarithmica (Translated by Ian Bruce). http://www.17centurymaths.com/contents/albriggs.html
- Egan, K. (1997). *The Educated Mind: How Cognitive Tools Shape Our Understanding*. Chicago: The University of Chicago Press.
- Fauvel, J. (1991). Using History in Mathematics Education. *For the Learning of Mathematics, Vol. 11, No. 2*, pp. 3-6
- Fauvel, J. and Maanen, J.A. (Eds.) (2000), *History in Mathematics Education An ICMI Study*. Netherlands: Kluwer Academic Publishers.
- Fried, M.N. (2008). History of Mathematics in Mathematics Education: a Saussurean Perspective. *The Montana Mathematics Enthusiast, Vol. 5, No. 2,* pp.185-198.
- Jankvist, U.T. (2009). A categorization of the "whys" and "hows" of using history in mathematics education. *Educational Studies in Mathematics*. Vol. 71, No. 3, pp. 235-261.
- Katz, V.J. (1986). Using History in Teaching Mathematics. For the Learning of Mathematics, Vol. 6, No. 3 (Nov., 1986), pp. 13-19.
- Katz, V.J. (1995). Napier's logarithms adapted for today's classroom. In F. Swetz, J. Fauvel, O. Bekken, B. Johansson, & V. Katz (Eds.), Learn from the masters. Washington D.C.: Mathematical Association of America.
- Sandifer, E. (2005). *Finding Logarithm by Hand. In Sandifer, E. (Eds.). How Euler did it.* Washington D.C.: Mathematical Association of America.
- Siu, M.K. (1978). *Why Study Mathematics? Enlightenment from History of Mathematics*. Hong Kong: Students' Time Publication. [In Chinese]
- Siu, M.K. (2007). No, I don't use history of mathematics in my class. Why?. In F. Furinghetti, S. Kaijser & C. Tzanakis (eds), Proceedings HPM2004 & ESU4, revised ed, Uppsala Universitet, pp. 268-277.
- Tang, K.C. (2006). History of Mathematics for the Young Educated Minds: A Hong Kong Reflection. In F. Furinghetti, S. Kaisjer and C. Tzanakis. (Eds.). Proceedings of HPM 2004 & ESU 4 (Revised Edition). Iraklion, Greece: University of Crete, pp. 630-638.
- 曹亮吉 (Cho) (2010)。《對數表的製作》。國立台灣大學科學教育發展中心-高瞻自然科學 教學資源平台。http://highscope.ch.ntu.edu.tw/wordpress/?p=14488
- 林倉億 (Lam) (2011). (log 2 怎麼算?)。教育部高中數學學科中心電子報第52期。台 北:教育部普通高級中學課程數學學科中心。

http://mathcenter.ck.tp.edu.tw/Resources/ePaper/Default.aspx?id=52

鄧國俊 (Tang) (2005)。《初中有向數的教與學:隱喻理論與學養心智理論的啟思)。黃毅 英主編。《蕭文強教授榮休文集:迎接新世紀重新檢視香港數學教育》。香港:香港 數學教育學會。

Appendix I: The worksheet used in the lesson

Let us continue to find the values of $\log_{10} 11$, $\log_{10} 12$, $\log_{10} 13$ $\log_{10} 30$. However if you think that you cannot find some of the values, just leave them blank. ... log10 12 = log10 11 = log10 13 = $\log_{10} 14 =$ log10 15 = log10 16 = log10 17 = log10 18 = log10 19 = 10g10 20 = log10 21 = log10 22 = log10 23 = log10 24 = log10 25 = log10 26 = log10 27 = log10 28 = 10g10 29 = 10g10 30 = What is the characteristic of the logarithm(s) that you cannot find? 3/5

4

(a) log	to express the follow	(b) $\log_{10} 15$	and or z.
(c) log	10 21	(d) log10 22	
(e) log	10.26	(f) 10910-28	
(0) 105		() 151120	
CHALLE	NGING QUESTI	ON:	
Suppose	$\log_{10} 2 \approx 0.3010$,	log10 3 ≈ 0.4771, log10 7 ≈ 0.845	51 and $\log_{10} 11 \approx 1.0414$.
Try to fi	ind the below values	by yourselves and check whether th	ie values you found are same as
the valu	es in the Table of LO	GARITHMS or not!	
(a) log	10 1.1 =		
(b) log	10 1.21 =		No. 0 I 2 10 costo costo costo costo 11 cata cata costo c 12 crypz csza csza c c 13 1130 1173 1266 j j
(b) log (c) log	10 1.21 =		No. 0 I 2 10 00000 0043 0086 0 11 0414 0451 0492 0 12 0792 0828 0864 0 13 1139 1173 1266 1 14 1461 1492 1523 1 15 1701 1206 1818 1 15 1701 2064 2355 2
(b) log (c) log	no 1.21 = no 1.5 =		No. 0 I 2 10 0000 0043 0086 0 11 0414 0451 0402 0 12 0792 0828 0864 0 13 1139 1173 1266 1 14 1401 1492 1523 1 15 1761 1200 1818 1 16 2041 2068 2095 2 17 2304 2355 18 2553 2577 2041 19 2788 2820 2833 2 2 2 3
(b) log (c) log € [≪] (d) log	no 1.21 = no 1.5 = no 1.92 =		No. 0 I 2 10 0000 0043 0086 0 11 0414 0451 0492 0 12 0792 0828 0864 0 13 1139 1173 1266 1 14 1401 1402 1523 1 15 1701 1700 1818 1 16 2041 2085 2955 1 16 2041 9058 2055 1 19 2788 2810 2833 2 20 3010 3032 3043 3 21 322 3424 3464 3 23 3617 3636 3655 3 24 3802 3820 3838 3
(b) log (c) log €**(d) log	no 1.21 = no 1.5 = no 1.92 =		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
 (b) log (c) log ●^{**}(d) log ●^{**}(e) log 	no 1.21 = no 1.5 = no 1.92 =		No. o I 2 10 00000 0043 0086 0 11 0414 0451 0492 0 12 0792 0828 0864 0 13 1139 1173 1266 1 14 1461 1492 1523 1 15 177 1306 1818 1 16 2041 2058 2355 2 19 2788 2816 2853 2 19 2788 2816 3633 3 22 3424 3636 3055 3 24 3602 3820 3838 3 25 3979 9997 4014 4 26 4150 4166 4183 4 27 4314 4330 4346 4 28 452 4639 4554 4 30 4771 4786 486

Author's e-mail: patrick_chung@live.com