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This article is based on the seminar that the auythesented for the Hong
Kong Association for Mathematics Education at thengl Kong Baptist
University on May 22, 2008. In this article, thetl@or differentiates (a)
between institutionalized mathematics and schodhematics, (b) between
ways of understandingndways of thinkingas two complementary subsets of
mathematics that students should develop, (c) mtve®phisticated learners
and passive learners, and (d) between knowledgerdisation and knowledge
engagement as two modes of instructions. Hareé2807) pedagogical
principles will be discussed in relation to theigasof mathematical tasks and
their use in classrooms. Examples are presentedilliustrate how
mathematical tasks can be designed to accomplishicéearning and teaching
objectives, such as provoking the need for studensarn a particular concept,
promoting desirable ways of thinking, deterring esidable ways of thinking,
and assessing students’ conceptual understanding.

In general, mathematicians, scientists, and enggnieetheir school days
probably had less trouble understanding mathematioacepts that their
classmates had to struggle with. Possible exptarstwhich are debatable,
include they like math; they have the “math” getiesy were asked a lot of
thinking questions in their childhood; they had #orsg mathematical
foundation; and they thought like a mathematiciaNevertheless, mathematics
teachers can help students develop strong mathmhabundation and
mathematical habits of mind. Unfortunately, thetlmanatics taught in most
schools in the United States is school “mathematiekich is fundamentally
different from the mathematics practised by mathemaeas.
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Mathematics as a Discipline versus School Mathamati

Mathematics as a discipline is an interconnectel ofeconcepts. In its
transposition into the “mathematics” taught in sumhlp it is linearized and
compartmentalized (Eisenberg & Dreyfus, 1991).

Academic knowledge is very intricate and contairenynlinks
and connections; these cannot be presented askageasince
their presentation must be sequential. The elesnehtthis
knowledge must be taken apart and ordered seqlientidhis
process necessarily destroys many of the links thedefore
considerable part of the unity of the knowledge 3@

Consequently, school mathematics becomes a colteaif standalone
topics.

The mathematics practised by mathematicians ingopr@blem-solving,
making connections, generalizing, symbolizing, &titing, representing,
modelling, conjecturing, proving, seeking efficignand seeking elegance.
On the other hand, the focus in school mathemdgosls to be on facts,
procedures, definitions, theorems, and proofs. eMphasize the importance of
mathematical processes, the National Council ofhelaatics (NCTM) has
included both content standards as well as prosesglards in it$rinciples
and Standards for School Mathemat{2900). The five process standards are
(@) problem solving, (b) reasoning and proof, (@mmunication, (d)
connections, and (e) representations.

In response to the recent nationwide emphasis enUhited States on
testing and accountability under tNe Child Left Behindnandate in President
Bush’s educational policies, school teachers temdeach to the test and
disregard the process standards. Consequentlyy praspective teachers in
the teacher preparation program enter college wvptor mathematical
understanding. Some apply procedures without ngakense of the problem
situation. For example, the author found that ofRf6 of 64 prospective
middle-school teachers correctly answered theiofig problem: “A group of
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5 musicians plays a piece of music in 10 minutesnother group of 35
musicians will play the same piece of music. Howg will it take this group
to play it?” 42% of them obtained 70 minutes. @oeh solution is depicted
in Figure 1. Another 11% found other numbers bsearither the proportion
was incorrectly set up or they made a computationstake.

A group of 5 musicians plays a piece of music in 10 minutes, Another group of 35 musicians will
play the same piece of music. How leng will it take this group to play it?
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Figure 1. A prospective teacher’s solution
using a proportion for an invariant problem

Seaman and Szydlik (2007) found the pre-servicemeheary teachers in
their study “displayed a set of values and averfaesioing mathematics so
different from that of the mathematical communeynd so impoverished, that
they found it difficult to create fundamental mattagical understandings” (p.
167). These pre-service teachers’ deficient wdydhioking prevented them
from utilizing web-based resources effectively tolve problems. For
example, there were nine pre-service teachers whit mot find the greatest
common factor of 60 and 105 at the beginning. rAftgenty minutes spent
using online teacher resources (refer to http://mmath.com/school/subjectl/
lessons/S1U3L2GL.html), only one of them succeeadefinding the greatest
common factor of 60 and 105. These teachers “dtdexen attempt to make
sense of the relevant definitions provided by acliea resource” (p. 179).
Seaman and Szydlik describe these teachers asmetbally unsophisticated.
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Ways of Understanding and Ways of Thinking

A mathematically sophisticated individual is someavho “has taken as
her own the values and ways of knowing of the nmatteeal community”
(Seaman & Szydlik, 2007, p. 167). Although suchralvidual does not have
the depth of mathematical knowledge of mathematg;iahe should have habits
of mind that resemble those of mathematicians. ur€ig2 highlights two
components of knowing and doing mathematics as@apdine.

Knowing & Doing
Mathematics as a Discipline

A

Interconnected Knowledge
of Mathematics

Mathematical
Disposition & Beliefs
(i.e. Habits of Mind)

Figure 2. Two components of mathematics as aplisei

Harel's (in press) definition of mathematics acoetes the difference
between these two aspects.

Mathematics consists of two complementary subsekbe first
subset is a collection, or structure, of structucessisting of
particular axioms, definitions, theorems, proofsplems, and
solutions. This subset consists of all the ingonalizedways

of understanding(italics added) in mathematics throughout
history. ... The second subset consists of all wags of
thinking (italics added), which are characteristics of mhental
acts whose products comprise the first set. (p. 8)

This definition highlights the triad—mental act, ygaof understanding,
and ways of thinking—as illustrated in Figure 3. ccArding to Harel'sluality
principle (2007), “Students develop ways of thinking onlyrotigh the
construction of ways of understanding, and the wafysinderstanding they
produce are determined by the ways of thinking thegsess” (p. 272). This
principle asserts that ways of thinking cannot hanged without an appropriate
change in ways of understanding, and vice versaenck, both ways of

5
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understanding and ways of thinking must be incafeat as learning objectives
for students. In the author’s paper on mathemaktmwawledge for pre-service
teachers, Lim (2008a) describes the connection gnmays of understanding,
ways of thinking, angpedagogical content knowled¢g®&hulman, 1986).

Mental Act

N

Ways of Ways of
Understanding Thinking

Figure 3. The relationship among mental act,
ways of understanding, and ways of thinking

In the context of mathematics, mental acts inclumterpreting, predicting,
conjecturing, proving, symbolizing, structuring, ngouting, generalizing,
formulating, transforming, searching, and clasaiyi A way of understanding
refers to thecognitiveproduct of a mental act whereas a way of thinkefgrs
to the cognitive characteristic of the act (Harel, 2007, in presgjonsidering
the mental act of ascertaining the truth of a psttpm, Harel and Sowder
(1998) suggest a theoretical construct callgao6f schemewhich is a way of
thinking associated with the act of proving—asaemg for oneself or
persuading others of the truth or falsity of a eotyre. In the case of
ascertaining the truth of the propositidhe sum of two odd numbers is gven
the justification a student gives, such as “theppsition is true because it is
stated in the text book,” is considered the studemhy of understanding. The
student’s way of thinking characterizing this jtisaition is considered an
authoritative proof schemdédecause the student gains conviction from an
external source rather than from within mathematios justification based on
a list of instances suchas 1 + 3,1 + 5, 7 + @,h+ 25 is characterized as an
empirical proof scheme A justification that considers the generalitpast of
the conjecture is characterized adegluctive proof schem#or example, “odd
plus odd is ‘even plus one’ plus ‘even plus ongigs the two extra one’s form
a pair, there is no more odd one out; hence ods @tid must be even.” A
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taxonomy of proof schemes is found in Harel and &g (1998) article on
Students’ Proof Schemes

To elaborate Harel's ways of thinking associatethwie mental acts of
anticipating (Lim, 2008b, 2006), consider an eleventh gradsolsition to this
problem: “Is there a value of that will make this statement true? x® 8 —
15x) + 12 > (& — 8 — 1%) + 6” (Lim, 2008Db, p. 42). The student predictetl
course there is” and commented “Let’s see, | waghtito combine like terms.
| was taught this (>) is actually an equal sign ...After changing the
inequality to an equation and simplifying, the €mtdobtained 6 = 0, changed it
back to 6 > 0, and guessed “may be there isn’talaesforx that would make
the statement true. The student’s prediction dfctmurse there is” seemed to
be based on her association of her having a proeddusolving an inequality
with the inequality having a solution. Furthermdner prediction of “may be
there isn't” seemed to be based on her associagbmeen the disappearance of
x and the inequality’s not having a solution. Bdtkr predictions are
characterized asssociation-based predictipras opposed taoordination-
based prediction The student spontaneously thought of what slidado to
the inequality rather than analyzing the inequalityHer anticipation of
combining like terms is characterized asnpulsive anticipation-
“spontaneously proceeds with an action that comeawihd without analyzing
the problem situation and without considering takevance of the anticipated
action to the problem situation” (Lim, 2008b, p.)49 The student’s
interpretation of the inequality as an equatiooharacterized ason-referential
symbolic (Harel, 2007) because it is devoid of any refeatnneaning, as
opposed taeferential symbolige.g., interpreting an inequality as a comparison
of two quantities, or as a proposition whose trdlue depends on the value of
X). Association-based prediction, impulsive anttipn, and non-referential
symbolic interpretation are considered ways of kimg associated with the
mental acts of predicting, anticipating, and intetimg respectively.

Mathematics teachers should aim to help studentsgress from
undesirable ways of thinking to desirable ways lohking, such as those
depicted in Figure 4.
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Undesirable
Habits of Mind

Desirable
Habits of Mind

_——

Empirical proof scheme Deductive proof scheme

Association-based prediction Coordination-based prediction

*

Impulsive anticipation * Analytic anticipation

*

Non-referential symbolic reasoning Referential symbolic reasoning

Figure 4. Progression from undesirable habitsiafim
to desirable habits of mind

The question is how to teach so that studentsaridate desirable ways
of thinking. The way to teach will depend, to atam extent, on the type of
students we have.

Sophisticated Learners and Passive Learners
Two extreme types of learners are contrasted toerdoate their

differences in terms of epistemological beliefs &atning habits. Schommer
(1994) characterizes sophisticated learners as thd® tend to believe that
knowledge is mostly evolving whereas naive learraysthose who tend to
believe that knowledge is mostly unchanging. Th#em@nces between
sophisticated learners’ beliefs and naive learnsgbéfs are summarized in the
following table using Schommer’s (1994, p. 301)s&anological dimensions:

Epistemological Dimension

Sophisticated Learners ivilaearners

Certainty of knowledge

Constantly evolving

Absolatel unchanging

Organization of knowledge

Highly integrated

Compuantalized

Source of knowledge

Reasoned out

Handed by aughorit

Ability to learn

Acquired through experienc

a)

-

Geanalily predetermined

Speed of learning

Learning is a gradual proc

PSS rnlegis quick

According to Schommer (1994), students’ epistemobkigbeliefs affect
their engagement with knowledge, such as activauimpg integration of
information, and persistence in coping with diffidasks. In learning science,
sophisticated learners tend to view sciencdyammicand believe that learning
scientific ideas involve understanding what theyamand how they are related;
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passive learners on the contrary tend to view seiasstatic and believe that

scientific facts should be memorized (Songer & L.iA91). Characteristics
of passive learners, who tend to hold epistemo&deliefs of a naive learner,
are also described in mathematics education lusrat Schoenfeld (1985,
1992) found students to hold beliefs such as a enadfics problem has only
one right answer, a mathematics problem can besdalv just a few minutes,

there is only one way to solve a mathematics propland mathematics
students are expected to memorize and mechanigafily taught procedures.
For many students especially passive learners,nfdaonathematics means
following rules laid down by the teacher, knowingathrematics means
remembering and applying the correct rule whentéaeher asks a question,
and mathematical truth is determined when the answatified by the teacher”

(Lampert, 1990, p. 31).

Sophisticated learners tend to engage in activailea In the context of
mathematics learning, a sophisticated learner sublstantiate the knowledge
taught to them by instantiating with examples, segkcounter-examples,
investigating the necessity and sufficiency of ttanditions in a theorem,
making connections with related concepts, and t&tring and re-organizing
information in a systematic manner that make masiss to them. A
sophisticated learner realizes the ineffectivenessmemorizing without
understanding and believes that learning new mathieah ideas is effortful.
Wang (2008) highlights that top Chinese studenlisevthe role of investigation
and understanding in learning.

To understand mathematics knowledge, excellent &3ein
students ... attach great importance to researchppsesed to

rote memory. For complicated knowledge, beforeingsk
teachers or other students for help, they first toyfind the

answers themselves through independent investigg{o 100)

Passive learners, on the other hand, tend notfaptg with the knowledge
taught to them. Consequently, they have supelfioerstanding and the
knowledge learned in one topic may adversely afteeir performance in

9
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another. For example, after being taught conceptted to proportionality,
the author found that pre-service elementary anddi®ischool teachers
performed worse in items that does not involve apeprtional situation.
Figure 5 shows that (i) the number of students ahmse the correct answer “b”
for the direct-variation item (ratios are equaljreased from 64% (out of 138
students) to 78% (out of 124 students), (i) thenbar of students who chose
the correct answer “a” for the inverse-variatia@mt(products are equal), on the
other hand, dropped from 53% to 42% , and (iii) tlvenber of students who
chose the incorrect proportional answer “d” incegaom 24% to 40%.

Direct-Variation Item

The ratio of the amount of soda in the can to theuntof soda
in the bottle is 4:3. There are 12 fluid ouncesada in the can,
how many fluid ounces of soda are in the bottle?

Pretest  Posttest
(@) 8 fluid ounces 3% 6%
(b) 9 fluid ounces 64% 78%
(c) 15 fluid ounces 6% 3%

(d) 16 fluid ounces 27% 11%
(e) None of the above 1% 2%

an bottle

Inverse-Variation Item

The ratio of the volume of a small glass to theunw of a large
glass is 3:5. If it takes 15 small glasses tothk container,
how many large glasses does it take to fill thet@oer?

Pretest Posttest @

(@) 9glasses 53% 42%

(b) 13 glasses 9% 139, SMal glas

(c) 17 glasses 4% 2%

(d) 25 glasses 24% 40% @

(e) None of the above 10% 2% large glass container

Figure 5. Pre- and post-test comparison for temg

10
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Knowledge Dissemination Mode versus Knowledge Epgant
Modes of Instruction

Knowledge dissemination mode of instruction usud#dliges the form of
lectures. Mathematics classes have been tradifyoteught in this mode,
which is necessary for dissemination of a vast arhotiknowledge in a limited
amount of time. This mode of instruction can bieaive if (a) the students
are sophisticated learners; (b) the teacher héljgests see the big picture by
distinguishing critical ideas from supporting ideasakes students think by
posing intriguing questions, conveys enthusiasng aonstantly checks for
student learning, and (c) the lectures are wekwoimpd around a few key points
with connections among related ideas made explicitn a knowledge
dissemination mode, the teacher is considered aiatedbetween the
mathematics and the students, as shown in Figurd’fior to delivering an
effective lecture, the teacher typically engagesthwihe mathematics,
determines the key ideas, re-organizes the corgenind those ideas, and
designs questions and mini-activities to engageestis.

[ Mathematics}

[ Teacher ]ﬁ[ StudentsJ

Figure 6. Teacher brings mathematics to students
in a knowledge dissemination mode

Knowledge dissemination mode favors sophisticatearners because
sophisticated learners will investigate the mathewaon their own after
lecturers, as illustrated in Figure 7a. Hencejrtherestigation will deepen
their understanding of the lectured material. Ige@md Lu (2008) contend
that teacher-centered, content-oriented instructieorks well in Chinese
mainland universities because the students theck ttee employ deep learning
approaches. In the United States, many prospetdiaehers in liberal arts
undergraduate program tend to be passive when mesoto learning

11
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mathematics. Without analyzing the mathematicghtuo them, passive
learners acquirgpseudo-mathematicsas depicted in Figure 7b. Students’

: . . : 3a+5b 1
pseudo-mathematics can be evidenced in their estmisas ———— =
2a+5c 2
3+b 1
orc - 2 and k-6)k—9)<0=x<60rx<9 (Matz, 1980).
[Mathematics} [Mathematics} [ Pseudo- ]
mathematic

elf-engagement

Teacher Sophisticated Teacher Passive
Learner. Learner

a. Sophisticated Learners b. Passive Learners

Figure 7. Contrasting the two types of learners
in knowledge dissemination mode

For passive learners, knowledge engagement modansbfuction is
necessary. In this mode of instruction, meanintg#fsks can be used to engage
students with mathematics during class. As showfigure 8, a mathematical
task implemented as a classroom activity forcesirgeraction’ among the
students, the mathematics, and the teacher.

[ Mathematics}

/ Mathematical
Tasks

[ Teacher ]ﬁ[ StudentsJ

Figure 8. The centrality of mathematical tasks
in knowledge engagement mode

“Tasks influence learners by directing their ati@mtto particular aspects
of content and by specifying ways of processingnmiation” (Doyle, 1983, p.
161). According to Thompson, Carlson, and Silvern2007), mathematical
tasks can serve (a) to engender discussions ammagnss to learn new

12
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knowledge, (b) to engage students in reflection abdtraction, and (c) to
provide learners an opportunity to practise whaythave learned. Hence, the
use of well-designed mathematical tasks is a memaagage students in active
learning.

Pedagogical Principles to Guide the Design and dfddathematical
Tasks

A good mathematical task should, according to vaWtlle (2003), have
the following characteristics: (a) its primary fecshould be the mathematics, (b)
it should be challenging yet accessible to studesmsl (c) it should require
students to explain and justify their answers. oddymathematical task can be
designed and implemented with Harel’'s (2007) pedexgd principles in mind.
The pedagogical principles are tthaality principle thenecessity principleand
the repeated-reasoning principle Collectively they constitute tHeNR-based
instruction

The primary consideration in the design or selectb mathematical task
for a lesson should be the learning objectivesnbtithe use of a particular type
of technology or manipulatives. The learning obyes should include both
ways of understanding and ways of thinking becdaaehing one without the
other is ineffective as stipulated in Harel's (2p@udality principle Harel and
Sowder (2005) observed that “teachers often focusvays of understanding
but overlook the goal of helping students abstedtgctive ways of thinking
from these ways of understanding” (p. 29). Fornegple, students may learn
completing the square as a procedure for solviredratic equations without
recognizing that algebraic expressions are marnigdléwith the purpose of
arriving at a desired form and maintaining cerfaioperties of the expression
invariant” (Harel, in press). This way of thinking necessary in many
symbolic manipulations (e.g. the use of Gaussianimhtion to determine the
solution of a system of linear equations, the us$epartial fraction for
integrating certain rational functions, and the agequivalent fractions with a
common denominator in fraction addition). Henceachers should help
students foster certain ways of thinking while depeng mathematical

13
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understandings such as the completing-the-squatbocheand the Gaussian
elimination algorithm.

The necessity principlestipulates that, “For students to learn what we
intend to teach them, they must have a need favhgre by ‘need’ is meant
intellectual need, not social or economic need” r@Ha2007, p. 274).
Although economic needs (e.g., doing well in exations in order to gain
admission to a good university) may be a powerfativator for some students
to learn mathematics, they should not be the resbibity of teachers. On the
other hand, teachers are responsible for engagunigrsts with mathematics by
posing intriguing problems for students to solv&/hen students understand
and are intrigued by a problem posed to them, Hreylikely to experience an
intellectual need. When students encounter a pnodlic situation because of
the limitation of their existing knowledge, theyealikely to experience an
internal desire to resolve the situation; the netsmh may lead to modification
of their existing knowledge or construction of nkemowledge.

The repeated-reasoning principletates that, “Students must practice
reasoning in order to internalize, organize, andimevays of understanding and
ways of thinking” (Harel, 2007, p. 275). Studeats unlikely to develop deep
understanding or gain proficiency through a singlexperience.
Repeated-reasoning using varied mathematical tasktsmere drill or routine
practice, can help students reinforce the waysmfetstanding and ways of
thinking that are supposed to be fostered throwgtsoning with those tasks.
For example, the concept oétio as a measure&an be experienced using
various contextualized problems such as compasggdreness” of rectangular
lots (Simon & Blume, 1994), comparing steepnessrahps (Lobato &
Thanheiser, 2002), and comparing “oranginess” ahge juice drinks (Harel et
at., 1994). By sharing their reasoning and justdytheir explanations,
students are more likely to internalize and ret#e intended ways of
understanding (e.g., a ratio of two values for nhierent attributes produces
the measure of a third attribute) and ways of timgk(e.g., seeking different
ways to quantify an attribute).

14
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To help students improve their mathematical soasbn, tasks should
be designed to help them progress from undesiralalgs of thinking to
desirable ways of thinking. Designing a mathenadtiask in accordance with
Harel's duality principle means that students’ 8w ways of thinking and
ways of understanding should be considered. Igleatudents should
experience the limitation of their existing knowdedwhile working on the task,
develop desirable ways of thinking and ways of usid@ding, and appreciate
the contribution of these ways of thinking and waysunderstanding in the
construction of a solution. A task is said to haveen designed and
implemented in accordance with the necessity gladf students experience
an intellectual need for a particular way of thimkior way of understanding.
Presented in the next section are some examplesittdight the connections
between the tasks and the necessity principleeodtiality principle.

Mathematical Tasks for Fostering and for AssessiWW@ys of
Understanding and Ways of Thinking

Mathematical tasks can be designed to accomplistaicelearning and
teaching objectives, such as (a) provoking the rfeedtudents to develop a
particular way of understanding, (b) fostering &iddble way of thinking, (c)
deterring an undesirable way of thinking, and @jessing students’ conceptual
understanding. Presented below are four tasks wleae designed by the
author and used in his classrooms. There arerdlyn@o empirical evidences
to confirm the impact of these tasks on pre-sertgachers’ mathematical
sophistication. Nevertheless, these tasks aredfdonengage students in
thinking.

Provoking the Need for Place ValueAlthough prospective teachers in
the United States are familiar with arithmetic @tems involving whole
numbers, they may not have a solid understandimjack value. In her study,
Ma (1999) found that 77% of the 23 U.S. teachess;ampared to 14% of the
72 Chinese teachers, displayed only procedural ledye when asked to
discuss questions involving subtraction with regiag like 91 minus 79. The

15
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understanding of the U.S. teachers was limitedupedicial aspects of the
subtraction algorithm.

One way to draw students’ attention to the structfrplace value is to use
problems involving a different base. Tasks suchdasw multibase blocks to
represent 214, and 110%," may help students to see the structure of place

value, as illustrated in Figure 9.
7
H/N

2144, = 2x5% + 1x5 + 4x1

Figure 9. Use of multibase blocks to illustrataqal value

These tasks, however, do not present a need fdersisi to grapple with
the concept of place value. The task depictediguré 10 was specifically
designed for prospective elementary and middle @cteachers to experience
the intellectual need for place value.

Gremlins are rather smart. Although - ~
they have four fingers in each hand, <
they are able to represent 25 different 3

numbers, from 0 to 24, with two hands.

Can you figure out how they do it? N ,__,

Figure 10. A problem to provoke need for placaigal

This task requires the concept of place valuegoré out how two hands
of four fingers could represent 25 different valued’re-service teachers
generally find this problem intriguing because foem 10 human fingers can
only represent 11 values, from 0 to 10. The sotutinvolves assigning a
value of five to each finger on one hand and aealuone to each finger on the
other hand. This assignment reinforces the noti@t in decimal notation
digits on different positions represent differedage values. Tasks that

16
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provoke intellectual need for prime factorizationdafor lowest common
multiple are described in another article (see Limpress).

Promoting Referential Symbolic ReasoningUnsophisticated students
tend to solve mathematics problems without attepdio the meaning of
symbols. The following problem (Figure 11) wasdise remind prospective
teachers the importance of attending to the outpudntity of a function
represented graphically.

Anobject is moving along a straight line between point P and point Q.
The distance of the object from point P is denoted by x meters.

The graph shows how the object’s velocity, dx/dt, varies with time, t seconds.
dx
dt

P Q
% o
// T 4 7

In which intervals of time is the value of x increasing?
{a) Between 0 second and 9 seconds

(b} Between 6 seconds and 14 seconds

(c} Between 9 seconds and 14 secends

(d} Between 9 seconds and 20 seconds

Figure 11. A problem to promote referential synibotasoning

This problem was used twice for two groups of peatipe teachers in
review sessions for state certification examinatitn teach high-school
mathematics in Texas. Out of 12 students in tis §roup, 7 students chose
“b”, 3 students choose “c”, and only 2 studentssehthe correct answer “d”.
In the second group of 9 students, 4, 4 and 1 stadghose “b”, “c” and “d”
respectively. Students who chose “b” and “c” fali®n the characteristics of
the graph without attending to the referent qugntiamely velocity, associated
with the output of the function as represented bg given graph. By
providing an opportunity for students to experiertbeir tendency of not
attending to meaning, this task has the potentiiletping them progress from
non-referential symbolic reasoning to referentjahbolic reasoning, which is a
foundational characteristic of mathematical soptasion.

17
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Deterring Impulsive Anticipatian Unsophisticated students tend to rush
to a procedure without analyzing the problem situmat The problem in Figure
12 was designed to bring to their awareness thelesirable way of thinking,
namely impulsive anticipation, and to help themgoess towardsanalytic
anticipation—a way of thinking in which one analyzes the prablsituation
and establishes a goal or a criterion to guidesaetions (Lim, 2006, 2008b).

Sharon and Terri were ccmparing the size cf thei- palms.
Who co you think has a larger palm?

Torri'shand
S1a-on’shand [\‘I
. o -
. |'r\'|| ! |
(] !
| 7 yo )
IA\ | '.\ | i ['\ | |I | | I.I I|I
[ f IR
IRRRTEY AR
| \ / .
AL !,-’ [ IR .'“ Y
A0 |l 105 mr | .-(
I\‘\ - ll\ _,"’;
[ |I . :
|
A e
84 mm F0rmm

Figure 12. A problem to deter impulsive anticipati

This problem was posed after a series of problews used to highlight
the difference between additive comparison andipligative comparison, and
to reinforce the notion of ratio as a measure (&sguareness” of a rectangle,
steepness of a line, and concentration level ofriakd For this problem
involving comparison of palm-sizes, nine out ofs2@dents compared ratios (a
student’s response is shown in Figure 13), thregesits compared differences,
and only ten students compared areas as a meaweionine whose palm is
larger. This problem fosters the need for anatyzjnantities in a problem and
establishing the key idea for solving the probléhe key idea in this case is
comparing products.

20 Lon 1= -
24
| et ek cloiqge et FREGuesne
rokie of her mint netgnt 8 nge
ws A rEpk@c MO Trgrand L

Figure 13. A student’s solution to the palm-sieenparison problem
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Since the goal of developing the habit of analyzprgblem situation
instead of diving into a procedure was establishredhe first day of class as a
learning objective for the course, many studenfsepate the opportunity to be
aware of the need to analyze problem situation.r &mample, a student
commented in her learning log after the lesson linmg the palm-size
comparison problem: “Dr. Lim had the great art sing awesome little tricks
that would make us think you (should) use ratios,eixample, when in fact it
was multiplication! This was a great tactic, bessmwften | would rush right
into what | had just been taught, not even lookimg the problem.” Listed
below are a few comments written by other studemtsheir end-of-course
evaluations.

“The content was challenging at times, but requusgdo really think.”
“Everything we do is not hard, it just take thingi”

“The way he makes us think is a good strategy we us®e once we are
teachers.”

These comments seem to suggest that pre-servichersavalue the
amount of thinking required in the course. Newedhs, one semester of
learning in a “thinking” environment is unlikely thange students’ belief about
teaching and learning mathematics. Some studéiithave rely-on-teacher
expectations as depicted in the following comments.

“He should give us what he expects from us in eaciim. Give us a
review to take home.”

“When students write their solutions on the bodrel should tell us if the
student was right or wrong.”

“I would like a bit more explaining before assignite”

Assessing Students’ Understanding of Proportiofihe problem in Figure
14 was designed to assess whether prospective evsdtibol teachers have
understood that a proportion implies the equivageoctwo ratios. When the
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ribbon is scaled proportionally the ratio of itsdgh to its width remains
invariant. Many students could find the missindueawithout being aware of
the invariance of the ratio 4 : 3.

| |

2em

| |

— 12e¢m

< ~_ l1l6em -

The original picture of a ribbon {on the left} is shrunk such that the length
is reduced from 16 cm te 12 cm. The breadth in the new pictureis 5 cm.
Whatis the ratio of the breadth of the ribbon in the original picture to the
breadth of the ribbon in the new picture?

(a)4:3 (b) 5:64. (c)5:9 (d) 9:5 (e} None of the above

Figure 14. A problem to assess students’ undedstgrof proportion

. : .16
Majority of the pre-service teachers constructed pinoportion —— =

12
X 2

5 and correctly obtained g for the value ofx . However, the ratio

6? : 5 was not among the choices. Consequently, 88%2 students

chose “b” and 28% chose “e”. 16% chose “d” propdi#cause they reasoned
additively. Only six students (19%) chose the ecirrratio 4 : 3 and only two

2
of them chose “a” without obtainingg. These two students probably

understood that the 16 : 12, or 4 : 3, is theordiat is used to determine the
missing value. As a multiple choice item, thislgem differentiates students
who have a conceptual understanding of proportromfthose who merely

have a procedural understanding.

Designing mathematical tasks to accomplish cetiaching and learning
objectives can be rather challenging. Fortunatéig, skill can be developed,
one gets better with experience. In designingetecsing a mathematical task,
a teacher should consider students’ current wayshdérstanding and ways of
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thinking and tailor the task to a level of challerttat is appropriate for her or
his students. In addition, a teacher should cendite relation of the task to
past and future activities. For example, the psitbe- comparison problem is
posed after students have experienced comparinguatis such as squareness,
steepness, and oranginess. In the implementatiartask, teachers should be
sensitive to the norms and practices of the classro For example, in a
classroom of passive learners who are inclinedaib for the teacher to present
the solution to a problem, the teacher might havallbcate time to ensure that
students are interpreting the problem as intendext o asking them to work
independently in small groups. When students rdeseloped the habit of
analyzing problem statements, the teacher canrassiglents to work on a
problem without having to go over the problem stant as a class to ensure
correct interpretation.

Summary
To recapitulate, the distinction between mathersatis a discipline and

school mathematics highlights the “process” aspeft mathematics.
Corresponding to the content aspect and processctaghf mathematics are
ways of understanding and ways of thinking respeliti Mathematics
teachers should help students advance their waymaérstanding as well as
ways of thinking because the development of onen@p on the development
of the other.

Compared to passive learners, sophisticated learaer more likely to
engage in active inquiry, integrate informationg aasolve inconsistencies they
encounter. Because they grapple with the mathematn their own during
and after class, sophisticated learners are abldetelop desirable ways of
understanding and ways of thinking in a knowledggsemination mode of
instruction.  Passive learners on the other harel umlikely to develop
desirable ways of understanding and ways of thokin a knowledge
dissemination mode.

Knowledge engagement mode of instruction, wheiestaad activities are
designed to engage students with the mathematgsaite supposed to learn, is
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necessary for passive learners. Mathematical tasks be designed and
implemented, in accordance with Harel's three pedal principles, to foster
certain desirable ways of understanding and waythioking, as well as to
assess students’ depth of understanding.
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