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This article is based on the seminar that the author presented for the Hong 

Kong Association for Mathematics Education at the Hong Kong Baptist 

University on May 22, 2008.  In this article, the author differentiates (a) 

between institutionalized mathematics and school mathematics, (b) between 

ways of understanding and ways of thinking as two complementary subsets of 

mathematics that students should develop, (c) between sophisticated learners 

and passive learners, and (d) between knowledge dissemination and knowledge 

engagement as two modes of instructions.  Harel’s (2007) pedagogical 

principles will be discussed in relation to the design of mathematical tasks and 

their use in classrooms.  Examples are presented to illustrate how 

mathematical tasks can be designed to accomplish certain learning and teaching 

objectives, such as provoking the need for students to learn a particular concept, 

promoting desirable ways of thinking, deterring undesirable ways of thinking, 

and assessing students’ conceptual understanding. 

In general, mathematicians, scientists, and engineers in their school days 

probably had less trouble understanding mathematical concepts that their 

classmates had to struggle with.  Possible explanations, which are debatable, 

include they like math; they have the “math” gene; they were asked a lot of 

thinking questions in their childhood; they had a strong mathematical 

foundation; and they thought like a mathematician.  Nevertheless, mathematics 

teachers can help students develop strong mathematical foundation and 

mathematical habits of mind.  Unfortunately, the mathematics taught in most 

schools in the United States is school “mathematics”, which is fundamentally 

different from the mathematics practised by mathematicians. 



EduMath 27 (12/2008) 

3 

Mathematics as a Discipline versus School Mathematics  
Mathematics as a discipline is an interconnected web of concepts.  In its 

transposition into the “mathematics” taught in schools, it is linearized and 

compartmentalized (Eisenberg & Dreyfus, 1991). 

Academic knowledge is very intricate and contains many links 

and connections; these cannot be presented as a package since 

their presentation must be sequential.  The elements of this 

knowledge must be taken apart and ordered sequentially.  This 

process necessarily destroys many of the links and therefore 

considerable part of the unity of the knowledge. (p. 32) 

Consequently, school mathematics becomes a collection of standalone 

topics. 

The mathematics practised by mathematicians involves problem-solving, 

making connections, generalizing, symbolizing, structuring, representing, 

modelling, conjecturing, proving, seeking efficiency, and seeking elegance.  

On the other hand, the focus in school mathematics tends to be on facts, 

procedures, definitions, theorems, and proofs.  To emphasize the importance of 

mathematical processes, the National Council of Mathematics (NCTM) has 

included both content standards as well as process standards in its Principles 

and Standards for School Mathematics (2000).  The five process standards are 

(a) problem solving, (b) reasoning and proof, (c) communication, (d) 

connections, and (e) representations. 

In response to the recent nationwide emphasis in the United States on 

testing and accountability under the No Child Left Behind mandate in President 

Bush’s educational policies, school teachers tend to teach to the test and 

disregard the process standards.  Consequently, many prospective teachers in 

the teacher preparation program enter college with poor mathematical 

understanding.  Some apply procedures without making sense of the problem 

situation.  For example, the author found that only 47% of 64 prospective 

middle-school teachers correctly answered the following problem: “A group of 
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5 musicians plays a piece of music in 10 minutes.  Another group of 35 

musicians will play the same piece of music.  How long will it take this group 

to play it?”  42% of them obtained 70 minutes.  One such solution is depicted 

in Figure 1.  Another 11% found other numbers because either the proportion 

was incorrectly set up or they made a computational mistake.  

 

Figure 1.  A prospective teacher’s solution  

using a proportion for an invariant problem 

Seaman and Szydlik (2007) found the pre-service elementary teachers in 

their study “displayed a set of values and avenues for doing mathematics so 

different from that of the mathematical community, and so impoverished, that 

they found it difficult to create fundamental mathematical understandings” (p. 

167).  These pre-service teachers’ deficient ways of thinking prevented them 

from utilizing web-based resources effectively to solve problems.  For 

example, there were nine pre-service teachers who could not find the greatest 

common factor of 60 and 105 at the beginning.  After twenty minutes spent 

using online teacher resources (refer to http://www.math.com/school/subject1/ 

lessons/S1U3L2GL.html), only one of them succeeded in finding the greatest 

common factor of 60 and 105.  These teachers “did not even attempt to make 

sense of the relevant definitions provided by a teacher resource” (p. 179).  

Seaman and Szydlik describe these teachers as mathematically unsophisticated.  
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Ways of Understanding and Ways of Thinking 
A mathematically sophisticated individual is someone who “has taken as 

her own the values and ways of knowing of the mathematical community” 

(Seaman & Szydlik, 2007, p. 167).  Although such an individual does not have 

the depth of mathematical knowledge of mathematicians, she should have habits 

of mind that resemble those of mathematicians.  Figure 2 highlights two 

components of knowing and doing mathematics as a discipline.  

 

Figure 2.  Two components of mathematics as a discipline 

Harel’s (in press) definition of mathematics accentuates the difference 

between these two aspects. 

Mathematics consists of two complementary subsets.  The first 

subset is a collection, or structure, of structures consisting of 

particular axioms, definitions, theorems, proofs, problems, and 

solutions.  This subset consists of all the institutionalized ways 

of understanding (italics added) in mathematics throughout 

history.  …  The second subset consists of all the ways of 

thinking (italics added), which are characteristics of the mental 

acts whose products comprise the first set. (p. 8) 

This definition highlights the triad—mental act, ways of understanding, 

and ways of thinking—as illustrated in Figure 3.  According to Harel’s duality 

principle (2007), “Students develop ways of thinking only through the 

construction of ways of understanding, and the ways of understanding they 

produce are determined by the ways of thinking they possess” (p. 272).  This 

principle asserts that ways of thinking cannot be changed without an appropriate 

change in ways of understanding, and vice versa.  Hence, both ways of 
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understanding and ways of thinking must be incorporated as learning objectives 

for students.  In the author’s paper on mathematical knowledge for pre-service 

teachers, Lim (2008a) describes the connection among ways of understanding, 

ways of thinking, and pedagogical content knowledge (Shulman, 1986). 

 

Figure 3.  The relationship among mental act,  

ways of understanding, and ways of thinking 

In the context of mathematics, mental acts include interpreting, predicting, 

conjecturing, proving, symbolizing, structuring, computing, generalizing, 

formulating, transforming, searching, and classifying.  A way of understanding 

refers to the cognitive product of a mental act whereas a way of thinking refers 

to the cognitive characteristic of the act (Harel, 2007, in press).  Considering 

the mental act of ascertaining the truth of a proposition, Harel and Sowder 

(1998) suggest a theoretical construct called “proof scheme” which is a way of 

thinking associated with the act of proving—ascertaining for oneself or 

persuading others of the truth or falsity of a conjecture.  In the case of 

ascertaining the truth of the proposition: the sum of two odd numbers is even, 

the justification a student gives, such as “the proposition is true because it is 

stated in the text book,” is considered the student’s way of understanding.  The 

student’s way of thinking characterizing this justification is considered an 

authoritative proof scheme because the student gains conviction from an 

external source rather than from within mathematics.  A justification based on 

a list of instances such as 1 + 3, 1 + 5, 7 + 9, and 13 + 25 is characterized as an 

empirical proof scheme.  A justification that considers the generality aspect of 

the conjecture is characterized as a deductive proof scheme; for example, “odd 

plus odd is ‘even plus one’ plus ‘even plus one’; since the two extra one’s form 

a pair, there is no more odd one out; hence odd plus odd must be even.”  A 
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taxonomy of proof schemes is found in Harel and Sowder’s (1998) article on 

Students’ Proof Schemes. 

To elaborate Harel’s ways of thinking associated with the mental acts of 

anticipating (Lim, 2008b, 2006), consider an eleventh grader’s solution to this 

problem: “Is there a value of x that will make this statement true?  (6x – 8 – 

15x) + 12 > (6x – 8 – 15x) + 6” (Lim, 2008b, p. 42).  The student predicted “of 

course there is” and commented “Let’s see, I was taught to combine like terms.  

I was taught this (>) is actually an equal sign …”.  After changing the 

inequality to an equation and simplifying, the student obtained 6 = 0, changed it 

back to 6 > 0, and guessed “may be there isn’t” a value for x that would make 

the statement true.  The student’s prediction of “of course there is” seemed to 

be based on her association of her having a procedure for solving an inequality 

with the inequality having a solution.  Furthermore, her prediction of “may be 

there isn’t” seemed to be based on her association between the disappearance of 

x and the inequality’s not having a solution.  Both her predictions are 

characterized as association-based prediction, as opposed to coordination- 

based prediction.  The student spontaneously thought of what she could do to 

the inequality rather than analyzing the inequality.  Her anticipation of 

combining like terms is characterized as impulsive anticipation— 

“spontaneously proceeds with an action that comes to mind without analyzing 

the problem situation and without considering the relevance of the anticipated 

action to the problem situation” (Lim, 2008b, p. 49).  The student’s 

interpretation of the inequality as an equation is characterized as non-referential 

symbolic (Harel, 2007) because it is devoid of any referential meaning, as 

opposed to referential symbolic (e.g., interpreting an inequality as a comparison 

of two quantities, or as a proposition whose truth value depends on the value of 

x).  Association-based prediction, impulsive anticipation, and non-referential 

symbolic interpretation are considered ways of thinking associated with the 

mental acts of predicting, anticipating, and interpreting respectively. 

Mathematics teachers should aim to help students progress from 

undesirable ways of thinking to desirable ways of thinking, such as those 

depicted in Figure 4.  



數學教育第二十七期 (12/2008) 

8 

 

Figure 4.  Progression from undesirable habits of mind  

to desirable habits of mind 

The question is how to teach so that students can inculcate desirable ways 

of thinking.  The way to teach will depend, to a certain extent, on the type of 

students we have.  

Sophisticated Learners and Passive Learners  
Two extreme types of learners are contrasted to accentuate their 

differences in terms of epistemological beliefs and learning habits.  Schommer 

(1994) characterizes sophisticated learners as those who tend to believe that 

knowledge is mostly evolving whereas naïve learners as those who tend to 

believe that knowledge is mostly unchanging.  The differences between 

sophisticated learners’ beliefs and naïve learners’ beliefs are summarized in the 

following table using Schommer’s (1994, p. 301) epistemological dimensions:  

Epistemological Dimension Sophisticated Learners Naïve Learners 

Certainty of knowledge Constantly evolving Absolute and unchanging 

Organization of knowledge Highly integrated Compartmentalized 

Source of knowledge Reasoned out Handed by authority 

Ability to learn Acquired through experience Genetically predetermined 

Speed of learning Learning is a gradual process Learning is quick  

According to Schommer (1994), students’ epistemological beliefs affect 

their engagement with knowledge, such as active inquiry, integration of 

information, and persistence in coping with difficult tasks.  In learning science, 

sophisticated learners tend to view science as dynamic and believe that learning 

scientific ideas involve understanding what they mean and how they are related; 
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passive learners on the contrary tend to view science as static and believe that 

scientific facts should be memorized (Songer & Linn, 1991).  Characteristics 

of passive learners, who tend to hold epistemological beliefs of a naïve learner, 

are also described in mathematics education literature.  Schoenfeld (1985, 

1992) found students to hold beliefs such as a mathematics problem has only 

one right answer, a mathematics problem can be solved in just a few minutes, 

there is only one way to solve a mathematics problem, and mathematics 

students are expected to memorize and mechanically apply taught procedures.  

For many students especially passive learners, “doing mathematics means 

following rules laid down by the teacher, knowing mathematics means 

remembering and applying the correct rule when the teacher asks a question, 

and mathematical truth is determined when the answer is ratified by the teacher” 

(Lampert, 1990, p. 31). 

Sophisticated learners tend to engage in active learning.  In the context of 

mathematics learning, a sophisticated learner will substantiate the knowledge 

taught to them by instantiating with examples, seeking counter-examples, 

investigating the necessity and sufficiency of the conditions in a theorem, 

making connections with related concepts, and structuring and re-organizing 

information in a systematic manner that make most sense to them.  A 

sophisticated learner realizes the ineffectiveness in memorizing without 

understanding and believes that learning new mathematical ideas is effortful.  

Wang (2008) highlights that top Chinese students value the role of investigation 

and understanding in learning.  

To understand mathematics knowledge, excellent Chinese 

students … attach great importance to research as opposed to 

rote memory.  For complicated knowledge, before asking 

teachers or other students for help, they first try to find the 

answers themselves through independent investigation. (p. 100) 

Passive learners, on the other hand, tend not to grapple with the knowledge 

taught to them.  Consequently, they have superficial understanding and the 

knowledge learned in one topic may adversely affect their performance in 
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another.  For example, after being taught concepts related to proportionality, 

the author found that pre-service elementary and middle-school teachers 

performed worse in items that does not involve a proportional situation.  

Figure 5 shows that (i) the number of students who chose the correct answer “b” 

for the direct-variation item (ratios are equal) increased from 64% (out of 138 

students) to 78% (out of 124 students), (ii) the number of students who chose 

the correct answer “a” for the inverse-variation item (products are equal), on the 

other hand, dropped from 53% to 42% , and (iii) the number of students who 

chose the incorrect proportional answer “d” increased from 24% to 40%. 

Direct-Variation Item 

The ratio of the amount of soda in the can to the amount of soda 

in the bottle is 4:3.  There are 12 fluid ounces of soda in the can, 

how many fluid ounces of soda are in the bottle? 

  Pretest Posttest 

(a) 8 fluid ounces 3% 6% 

(b) 9 fluid ounces 64% 78% 

(c) 15 fluid ounces 6% 3% 

(d) 16 fluid ounces 27% 11% 

(e) None of the above 1%  2% 

Inverse-Variation Item 

The ratio of the volume of a small glass to the volume of a large 

glass is 3:5.  If it takes 15 small glasses to fill the container, 

how many large glasses does it take to fill the container? 

  Pretest Posttest 

(a) 9 glasses 53% 42% 

(b) 13 glasses 9% 13% 

(c) 17 glasses 4% 2% 

(d) 25 glasses 24% 40% 

(e) None of the above   10% 2% 

Figure 5.  Pre- and post-test comparison for two items  

can bottle 

small glass 

large glass container 
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Knowledge Dissemination Mode versus Knowledge Engagement 
Modes of Instruction  

Knowledge dissemination mode of instruction usually takes the form of 

lectures.  Mathematics classes have been traditionally taught in this mode, 

which is necessary for dissemination of a vast amount of knowledge in a limited 

amount of time.  This mode of instruction can be effective if (a) the students 

are sophisticated learners; (b) the teacher helps students see the big picture by 

distinguishing critical ideas from supporting ideas, makes students think by 

posing intriguing questions, conveys enthusiasm, and constantly checks for 

student learning, and (c) the lectures are well organized around a few key points 

with connections among related ideas made explicit.  In a knowledge 

dissemination mode, the teacher is considered a mediator between the 

mathematics and the students, as shown in Figure 6.  Prior to delivering an 

effective lecture, the teacher typically engages with the mathematics, 

determines the key ideas, re-organizes the content around those ideas, and 

designs questions and mini-activities to engage students.  

 

Figure 6.  Teacher brings mathematics to students  

in a knowledge dissemination mode 

Knowledge dissemination mode favors sophisticated learners because 

sophisticated learners will investigate the mathematics on their own after 

lecturers, as illustrated in Figure 7a.  Hence, their investigation will deepen 

their understanding of the lectured material.  Leung and Lu (2008) contend 

that teacher-centered, content-oriented instruction works well in Chinese 

mainland universities because the students there tend to employ deep learning 

approaches.  In the United States, many prospective teachers in liberal arts 

undergraduate program tend to be passive when it comes to learning 

Mathematics 

Teacher Students 
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mathematics.  Without analyzing the mathematics taught to them, passive 

learners acquire pseudo-mathematics, as depicted in Figure 7b.  Students’ 

pseudo-mathematics can be evidenced in their errors such as  
ca

ba

52

53

+
+

 = 
2

1
 

⇒ 
c

b

+
+

2

3
 = 

2

1
  and  (x – 6)(x – 9) < 0 ⇒ x < 6 or x < 9  (Matz, 1980).  

  

 a. Sophisticated Learners b. Passive Learners 

 Figure 7.  Contrasting the two types of learners  

in knowledge dissemination mode 

For passive learners, knowledge engagement mode of instruction is 

necessary.  In this mode of instruction, meaningful tasks can be used to engage 

students with mathematics during class.  As shown in Figure 8, a mathematical 

task implemented as a classroom activity forces an ‘interaction’ among the 

students, the mathematics, and the teacher. 

 

Figure 8.  The centrality of mathematical tasks  

in knowledge engagement mode 

“Tasks influence learners by directing their attention to particular aspects 

of content and by specifying ways of processing information” (Doyle, 1983, p. 

161).  According to Thompson, Carlson, and Silverman (2007), mathematical 

tasks can serve (a) to engender discussions among students to learn new 

Mathematics 

Students 

Mathematical 
Tasks 

Teacher 

Passive 
Learners 

Pseudo- 
mathematics 

Mathematics 

Teacher Sophisticated 
Learners 

Mathematics 

Teacher 

Self-engagement 
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knowledge, (b) to engage students in reflection and abstraction, and (c) to 

provide learners an opportunity to practise what they have learned.  Hence, the 

use of well-designed mathematical tasks is a means to engage students in active 

learning. 

Pedagogical Principles to Guide the Design and Use of Mathematical 
Tasks 

A good mathematical task should, according to van de Walle (2003), have 

the following characteristics: (a) its primary focus should be the mathematics, (b) 

it should be challenging yet accessible to students, and (c) it should require 

students to explain and justify their answers.  A good mathematical task can be 

designed and implemented with Harel’s (2007) pedagogical principles in mind.  

The pedagogical principles are the duality principle, the necessity principle, and 

the repeated-reasoning principle.  Collectively they constitute the DNR-based 

instruction. 

The primary consideration in the design or selection of mathematical task 

for a lesson should be the learning objectives, but not the use of a particular type 

of technology or manipulatives.  The learning objectives should include both 

ways of understanding and ways of thinking because teaching one without the 

other is ineffective as stipulated in Harel’s (2007) duality principle.  Harel and 

Sowder (2005) observed that “teachers often focus on ways of understanding 

but overlook the goal of helping students abstract effective ways of thinking 

from these ways of understanding” (p. 29).  For example, students may learn 

completing the square as a procedure for solving quadratic equations without 

recognizing that algebraic expressions are manipulated “with the purpose of 

arriving at a desired form and maintaining certain properties of the expression 

invariant” (Harel, in press).  This way of thinking is necessary in many 

symbolic manipulations (e.g. the use of Gaussian elimination to determine the 

solution of a system of linear equations, the use of partial fraction for 

integrating certain rational functions, and the use of equivalent fractions with a 

common denominator in fraction addition).  Hence, teachers should help 

students foster certain ways of thinking while developing mathematical 
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understandings such as the completing-the-square method and the Gaussian 

elimination algorithm.  

The necessity principle stipulates that, “For students to learn what we 

intend to teach them, they must have a need for it, where by ‘need’ is meant 

intellectual need, not social or economic need” (Harel, 2007, p. 274).  

Although economic needs (e.g., doing well in examinations in order to gain 

admission to a good university) may be a powerful motivator for some students 

to learn mathematics, they should not be the responsibility of teachers.  On the 

other hand, teachers are responsible for engaging students with mathematics by 

posing intriguing problems for students to solve.  When students understand 

and are intrigued by a problem posed to them, they are likely to experience an 

intellectual need.  When students encounter a problematic situation because of 

the limitation of their existing knowledge, they are likely to experience an 

internal desire to resolve the situation; the resolution may lead to modification 

of their existing knowledge or construction of new knowledge.  

The repeated-reasoning principle states that, “Students must practice 

reasoning in order to internalize, organize, and retain ways of understanding and 

ways of thinking” (Harel, 2007, p. 275).  Students are unlikely to develop deep 

understanding or gain proficiency through a single experience.  

Repeated-reasoning using varied mathematical tasks, not mere drill or routine 

practice, can help students reinforce the ways of understanding and ways of 

thinking that are supposed to be fostered through reasoning with those tasks.  

For example, the concept of ratio as a measure can be experienced using 

various contextualized problems such as comparing “squareness” of rectangular 

lots (Simon & Blume, 1994), comparing steepness of ramps (Lobato & 

Thanheiser, 2002), and comparing “oranginess” of orange juice drinks (Harel et 

at., 1994).  By sharing their reasoning and justifying their explanations, 

students are more likely to internalize and retain the intended ways of 

understanding (e.g., a ratio of two values for two different attributes produces 

the measure of a third attribute) and ways of thinking (e.g., seeking different 

ways to quantify an attribute). 
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To help students improve their mathematical sophistication, tasks should 

be designed to help them progress from undesirable ways of thinking to 

desirable ways of thinking.  Designing a mathematical task in accordance with 

Harel’s duality principle means that students’ existing ways of thinking and 

ways of understanding should be considered.  Ideally, students should 

experience the limitation of their existing knowledge while working on the task, 

develop desirable ways of thinking and ways of understanding, and appreciate 

the contribution of these ways of thinking and ways of understanding in the 

construction of a solution.  A task is said to have been designed and 

implemented in accordance with the necessity principle if students experience 

an intellectual need for a particular way of thinking or way of understanding.  

Presented in the next section are some examples that highlight the connections 

between the tasks and the necessity principle or the duality principle. 

Mathematical Tasks for Fostering and for Assessing Ways of 
Understanding and Ways of Thinking 

Mathematical tasks can be designed to accomplish certain learning and 

teaching objectives, such as (a) provoking the need for students to develop a 

particular way of understanding, (b) fostering a desirable way of thinking, (c) 

deterring an undesirable way of thinking, and (d) assessing students’ conceptual 

understanding.  Presented below are four tasks that were designed by the 

author and used in his classrooms.  There are currently no empirical evidences 

to confirm the impact of these tasks on pre-service teachers’ mathematical 

sophistication.  Nevertheless, these tasks are found to engage students in 

thinking.  

Provoking the Need for Place Value.  Although prospective teachers in 

the United States are familiar with arithmetic operations involving whole 

numbers, they may not have a solid understanding of place value.  In her study, 

Ma (1999) found that 77% of the 23 U.S. teachers, as compared to 14% of the 

72 Chinese teachers, displayed only procedural knowledge when asked to 

discuss questions involving subtraction with regrouping like 91 minus 79.  The 
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understanding of the U.S. teachers was limited to superficial aspects of the 

subtraction algorithm.  

One way to draw students’ attention to the structure of place value is to use 

problems involving a different base.  Tasks such as “draw multibase blocks to 

represent 214five and 1101two” may help students to see the structure of place 

value, as illustrated in Figure 9.  

 

Figure 9.  Use of multibase blocks to illustrate place value 

These tasks, however, do not present a need for students to grapple with 

the concept of place value.  The task depicted in Figure 10 was specifically 

designed for prospective elementary and middle school teachers to experience 

the intellectual need for place value.  

 

Figure 10.  A problem to provoke need for place value 

This task requires the concept of place value to figure out how two hands 

of four fingers could represent 25 different values.  Pre-service teachers 

generally find this problem intriguing because for them 10 human fingers can 

only represent 11 values, from 0 to 10.  The solution involves assigning a 

value of five to each finger on one hand and a value of one to each finger on the 

other hand.  This assignment reinforces the notion that in decimal notation 

digits on different positions represent different place values.  Tasks that 
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provoke intellectual need for prime factorization and for lowest common 

multiple are described in another article (see Lim, in press).  

Promoting Referential Symbolic Reasoning.  Unsophisticated students 

tend to solve mathematics problems without attending to the meaning of 

symbols.  The following problem (Figure 11) was used to remind prospective 

teachers the importance of attending to the output quantity of a function 

represented graphically.  

 

Figure 11.  A problem to promote referential symbolic reasoning 

This problem was used twice for two groups of prospective teachers in 

review sessions for state certification examination to teach high-school 

mathematics in Texas.  Out of 12 students in the first group, 7 students chose 

“b”, 3 students choose “c”, and only 2 students chose the correct answer “d”.  

In the second group of 9 students, 4, 4 and 1 students chose “b”, “c” and “d” 

respectively.  Students who chose “b” and “c” focused on the characteristics of 

the graph without attending to the referent quantity, namely velocity, associated 

with the output of the function as represented by the given graph.  By 

providing an opportunity for students to experience their tendency of not 

attending to meaning, this task has the potential of helping them progress from 

non-referential symbolic reasoning to referential symbolic reasoning, which is a 

foundational characteristic of mathematical sophistication.   
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Deterring Impulsive Anticipation.  Unsophisticated students tend to rush 

to a procedure without analyzing the problem situation.  The problem in Figure 

12 was designed to bring to their awareness their undesirable way of thinking, 

namely impulsive anticipation, and to help them progress towards analytic 

anticipation—a way of thinking in which one analyzes the problem situation 

and establishes a goal or a criterion to guide one’s actions (Lim, 2006, 2008b).  

  

Figure 12.  A problem to deter impulsive anticipation 

This problem was posed after a series of problems was used to highlight 

the difference between additive comparison and multiplicative comparison, and 

to reinforce the notion of ratio as a measure (e.g. “squareness” of a rectangle, 

steepness of a line, and concentration level of a drink).  For this problem 

involving comparison of palm-sizes, nine out of 22 students compared ratios (a 

student’s response is shown in Figure 13), three students compared differences, 

and only ten students compared areas as a means to determine whose palm is 

larger.  This problem fosters the need for analyzing quantities in a problem and 

establishing the key idea for solving the problem; the key idea in this case is 

comparing products. 

 

Figure 13.  A student’s solution to the palm-size comparison problem 
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Since the goal of developing the habit of analyzing problem situation 

instead of diving into a procedure was established on the first day of class as a 

learning objective for the course, many students appreciate the opportunity to be 

aware of the need to analyze problem situation.  For example, a student 

commented in her learning log after the lesson involving the palm-size 

comparison problem: “Dr. Lim had the great art of using awesome little tricks 

that would make us think you (should) use ratios, for example, when in fact it 

was multiplication!  This was a great tactic, because often I would rush right 

into what I had just been taught, not even looking into the problem.”  Listed 

below are a few comments written by other students in their end-of-course 

evaluations. 

“The content was challenging at times, but required us to really think.”  

 “Everything we do is not hard, it just take thinking.” 

“The way he makes us think is a good strategy we can use once we are 

teachers.” 

These comments seem to suggest that pre-service teachers value the 

amount of thinking required in the course.  Nevertheless, one semester of 

learning in a “thinking” environment is unlikely to change students’ belief about 

teaching and learning mathematics.  Some students still have rely-on-teacher 

expectations as depicted in the following comments. 

“He should give us what he expects from us in each exam.  Give us a 

review to take home.”  

“When students write their solutions on the board, he should tell us if the 

student was right or wrong.”  

“I would like a bit more explaining before assignments.”  

Assessing Students’ Understanding of Proportion.  The problem in Figure 

14 was designed to assess whether prospective middle-school teachers have 

understood that a proportion implies the equivalence of two ratios.  When the 
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ribbon is scaled proportionally the ratio of its length to its width remains 

invariant.  Many students could find the missing value without being aware of 

the invariance of the ratio 4 : 3. 

  

Figure 14.  A problem to assess students’ understanding of proportion 

Majority of the pre-service teachers constructed the proportion 
12

16
 = 

5

x
 and correctly obtained  6

3

2
 for the value of x .  However, the ratio  

6
3

2
 : 5  was not among the choices.  Consequently, 38% of 32 students 

chose “b” and 28% chose “e”.  16% chose “d” probably because they reasoned 

additively.  Only six students (19%) chose the correct ratio 4 : 3 and only two 

of them chose “a” without obtaining 6
3

2
.  These two students probably 

understood that the 16 : 12, or 4 : 3 , is the ratio that is used to determine the 

missing value.  As a multiple choice item, this problem differentiates students 

who have a conceptual understanding of proportion from those who merely 

have a procedural understanding.  

Designing mathematical tasks to accomplish certain teaching and learning 

objectives can be rather challenging.  Fortunately, this skill can be developed; 

one gets better with experience.  In designing or selecting a mathematical task, 

a teacher should consider students’ current ways of understanding and ways of 
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thinking and tailor the task to a level of challenge that is appropriate for her or 

his students.  In addition, a teacher should consider the relation of the task to 

past and future activities.  For example, the palm-size comparison problem is 

posed after students have experienced comparing attributes such as squareness, 

steepness, and oranginess.  In the implementation of a task, teachers should be 

sensitive to the norms and practices of the classroom.  For example, in a 

classroom of passive learners who are inclined to wait for the teacher to present 

the solution to a problem, the teacher might have to allocate time to ensure that 

students are interpreting the problem as intended prior to asking them to work 

independently in small groups.  When students have developed the habit of 

analyzing problem statements, the teacher can assign students to work on a 

problem without having to go over the problem statement as a class to ensure 

correct interpretation.  

Summary 
To recapitulate, the distinction between mathematics as a discipline and 

school mathematics highlights the “process” aspect of mathematics.  

Corresponding to the content aspect and process aspect of mathematics are 

ways of understanding and ways of thinking respectively.  Mathematics 

teachers should help students advance their ways of understanding as well as 

ways of thinking because the development of one depends on the development 

of the other.  

Compared to passive learners, sophisticated learners are more likely to 

engage in active inquiry, integrate information, and resolve inconsistencies they 

encounter.  Because they grapple with the mathematics on their own during 

and after class, sophisticated learners are able to develop desirable ways of 

understanding and ways of thinking in a knowledge dissemination mode of 

instruction.  Passive learners on the other hand are unlikely to develop 

desirable ways of understanding and ways of thinking in a knowledge 

dissemination mode.  

Knowledge engagement mode of instruction, where tasks and activities are 

designed to engage students with the mathematics they are supposed to learn, is 
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necessary for passive learners.  Mathematical tasks can be designed and 

implemented, in accordance with Harel’s three pedagogical principles, to foster 

certain desirable ways of understanding and ways of thinking, as well as to 

assess students’ depth of understanding.  
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