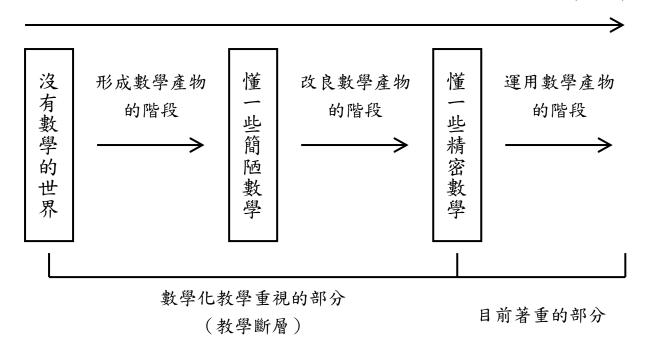
數學化教學:整除性檢定

楊思敏 聖公會置富始南小學 馮振業 香港教育學院數學系

數學化觀點


隨著時代的轉變,社會的進步,如今小學數學科所教授的內容大都能利用一般的電子計算機完成,不期然讓人質疑學數學的意義。的確,現今的學生不應只是單純地學習特定的題材,盲目地進行操作訓練、追求準確度。Freudenthal(1973, 1991)提出以數學化(Mathematising)觀點組織數學教學。「數學化」就是數學產物由無到有,由粗疏變精密的過程。在過程中,學習者以數學方法、手段或工具去認識及組織現實經驗。而學數學的真正意義,就是參與這個數學「再創造」(re-invention)的過程。

研究範式

德國數學教育家 Wittmann (1995, 2001)提出以「系統進化」 (Systemic-evolutionary)的「設計科學」(Design science)範式處理複雜的教學問題,從教學單元的研究入手,對不同課題的教學作出小心設計。是次的研究報告就是希望以這種發展性研究(Developmental Research),根據數學化的觀點對整除性一課題進行設計、施教、評鑑及反思,以體驗數學化觀點在教學設計上所起的作用。

數學化教學

「數學化」觀點,被馮(1999)首次引進香港,作爲教學研究計畫「數學化教學」的指導思想。他指出現今數學教育往往只著重數學最終成果的運用,忽略數學原理的推演,妨礙學生思考數學、理解數學,形成教學斷層(馮、王、葉、何,2000)。「數學化教學」正正是針對這個廣被忽略的教學斷層,主張讓學生從現實世界的經驗開始,經歷數學產物由衍生、改良、到精煉的數學化過程。

數學化觀點的作用

於 2004 年的香港數學教育會議上,馮對數學化觀點如何指導研究工作,作了更進一步的解釋。在數學化教學的執行方式之下,有三個重要的研究對象:骨架方案、執行方案和實踐檢驗。在研究課題教學設計時,骨架方案所指的是學習經驗的宏觀布局,執行方案就是教學進行的具體細節,而實踐檢驗便是教學的實踐部分。他提出九個關注項目如下:

- (一) 主體內容是否遵循由無到有,由粗疏變精密的推演過程?
- (二)教學發展有否充分照顧,學生運用其已建構的知識和技巧,透過具體的科學辯證手法,再創造新數學知識的學習規格?
- (三) 教學軌道是否充分體現數學思想的發展,和具一般性的數學方法?
- (四) 教學設計在實踐的課室環境是否具備一定的可行性?
- (五) 教學設計有否措施舒緩差異對教學發展構成的壓力?
- (六) 教學設計有否照顧孕育適當數學語言的需要?
- (七)教師能否讓內容重點快速、準確和清晰地在學生面前呈現?
- (八)教師能否透過充分示範和適當回饋,讓學生掌握數學獨特的思考方 法和語言運用?
- (九)教師有否重視培養有利學習數學的工作習慣和態度?(馮,2004)

數學教育第二十期 (6/2005)

上述(一)、(二)、(三)、(六)、(八)、(九)項,可算是「數學化觀點」的自然引伸。教學由設計到執行有多「數學化」,就得看這些關注項目有多大程度得到照顧。

一般書的做法

在 2002 年推行的新小學數學課程中,除了 2、5、10 的整除性外,其餘的整除性被放入增潤課程(香港課程發展議會,2000)。

觀察市面上的教科書,大多會在這個課題上利用觀察規律的歸納推理模式,讓學生在大量的同樣能被某數整除的數中,找出其整除性檢定法,然後再進行大量操練(可參考林、陳(2002),《現代數學》4上B冊)。面對這個看似理所當然的教學設計,不期然讓人疑惑:透過觀察,似乎找出整數的某些特性,但究竟是甚麼導致整數有這樣的一個整除特性卻無從得知。在不知其原因的情況下,學生只能死記各個不同的整除性,教學流程並未能進一步培養學生有系統的數學思維能力。

高等數學的做法

事實上,整除性檢定法的發展是源於對數值、整除與餘數關係的理解, 背後有著嚴謹的證明支持(可參考文、梁、吳(2000),《基礎數學引論》, 99-101頁)。而6的整除性,更是利用了以下定理:

定理 1 設 $a \cdot b$ 互質正整數,則 m 是 a 和 b 的公倍數當且僅當 m 是 ab 的 倍數。

證明 當
$$a \cdot b$$
 互質, 必存在整數 x 和 y 使 $ax + by = 1$ 。 (1)

由
$$m$$
是 a 和 b 的公倍數得知必存在整數 k 和 n 使 $ak=m$ (2)

$$\not \supseteq bn = m \, \circ \tag{3}$$

將 (1) 式乘以
$$m$$
, 得 $m(ax + by) = m$, 即 $axm + bym = m$ 。 (4)

將 (2) 式、(3) 式代入 (4) 式,便有 axbn + byak = m,即存在整數 (xn + yk) 使 ab(xn + yk) = m,得證 m 是 ab 的倍數。

逆定理明顯,此處從略。

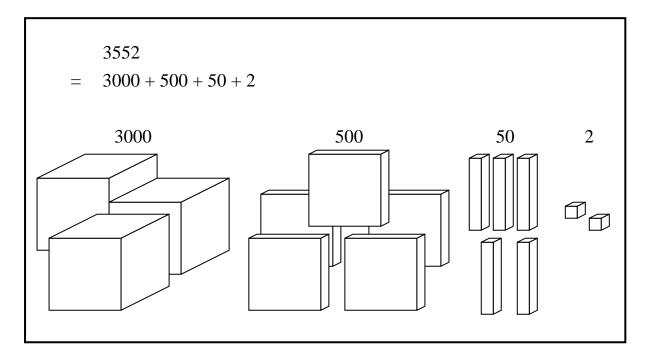
在以上的論證中,清楚顯示兩數互質是證明的關鍵,使等式ax + by = 1

存在,進而推得所需結果。

儘管上述結果能一般地提供整除性檢定法則聯結運用的可行性,不幸地,以上的論證涉及小學生不懂的定理、抽象的表達、及高層次的數學語言,不可能全盤搬到小學的教學上。如果繞過理解與證明,恐怕只能著學生相信這些檢定法了。

骨架方案

根據數學化教學的執行方式,整個骨架方案(附件一)的設計過程中, 最重要的考慮是如何將嚴謹的思考過程,以學生明白並能參與的形式表達 出來。以下會分別由宏觀的主體內容的推演、辯證手法及數學思想和方法 三方面作出討論。


- 一、主體內容的推演。從一個宏觀的角度來看,主體內容必須遵循由 無到有,由粗疏變精密的推演過程(馮,2004)。單看各個整除性檢定的「口 訣」,並沒有難易之分,最多只可介定有些整除性檢定法較易表達和運用, 有些則需要較多的計算,當中談不上甚麼由粗疏變精密的推演。然而,透 過了解整除性檢定法則的證明,可以清晰地了解到它們之間存在不同的層 次。根據背後理念的複雜程度,及推演過程中所需的思維精密程度,整個 教學順序首先會是 2、5、10 的整除性,因爲這個最易理解,然後是 4 和 8 的整除性,由於這兩個的整除性檢定法則原理相近,同是要確立某位值以 上的數必能被檢定數整除,可以不必考慮,學生較容易接受此思考模式, 因此放在較前的順序。當有以4、8整除性的經驗後,便可嘗試加入各位值 均非檢定數的倍數的情況。以9和3除各位值時,同樣餘1,可放在4和8 後,引導學生思想餘數與整除性的關係。不過,先教授9的整除性會較合 平學生的進度,因爲較易看出餘數。而檢定 11 的奇偶位差法則是由餘數是 10 和 1 相間的現象得出,與 3、9 儘管近似,卻較複雜。雖然同是考慮各 位值的餘數,但另加要求學生留意奇偶位值的餘數的特點,並加以組合, 才能理出奇偶位差法的原理,較適合緊隨 3、9的整除性教授。最後,才進 入要繞過互質概念的6的整除性。
- 二、辯證手法。教學發展需要充分考慮,讓學生運用其已建構的知識 和技巧,並透過具體的科學辯證手法,再創造新數學知識的學習規格(馮, 2004)。就以上的觀點,在詳細的教學設計上,需要先考慮甚麼是學生已掌

數學教育第二十期 (6/2005)

握的。學生對整除觀念最根本的理解是:當一個整數能被 a 整除,即該整數滿足每 a 個一數,沒有餘數。當中只要抓緊這一個原理,引導學生按位值考慮能否每 a 個一數,或進一步將 a 的倍數移走,再根據餘下數粒的數目特質,推敲出相應的整除性檢定法則。在整個學習過程中,還需要考慮如何具體、有系統地辯證整除性檢定的原理。要進行這樣的教學發展,必須有方便展示位值、移走倍數和顯示餘數的輔助工具。此次實驗用上了十進制積木,切實地向學生展示所檢數的各個位值,然後按位值移走檢定數的倍數,並將其餘數展示出來,使學生實在地感受到整除概念的運作。更重要的是,透過這樣的具體物演示,學生便掌握到一套具一般性的方法。在整個課題的學習過程裏,這手法會重複出現,推導不同的檢定法則。學生不單可以以此爲科學辯證的基礎,甚至可以運用它去自行發掘整除性檢定法則。這麼一來,學生便有了再創造數學的主動權,不必再事事依賴教 師講解。

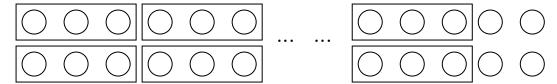
以下以4的整除性作爲例子:

1. 重申整數可以按位值展開,並具體地以十進制積木展示出來。

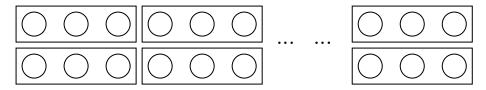
2. 針對學生在操練背後,對「除」的概念仍然薄弱的事實,須先引導學生釐清「整除」的意義:可被4整除的整數,一定可以每4個一組排列,沒有剩餘。

- 3. 接整數的位值,逐一觀察,在「整除」的意義上,把檢定數的倍數, 從各位值中移走,把所檢數是否檢定數的倍數的問題,化爲各位值上 殘餘的數,合起來是否檢定數的倍數的問題。
- 4. 先觀察百位位值,歸納出:由於 1 塊 100 積木能每 4 粒一組排列,沒 有剩餘,2 塊 100 積木當然也能滿足每 4 個一組排列,沒有剩餘。如 此類推,能寫成 100 的倍數的整數,均能被 4 整除。
- 5. 換言之,百位及更高位值的數字可以不理,因它們代表的數都是 4 的 倍數。
- 6. 由此推論出我們只要著眼於餘下的十位和個位,原數能被 4 整除當且 僅當其十位和個位所組成的兩位數能被 4 整除。

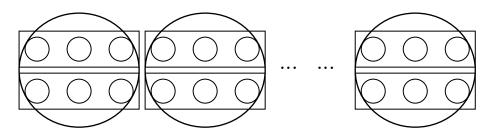
4、8、9、3 及 11 的整除性檢定均可透過以上的整理手法向學生展示(附件二:9 的整除性檢定法之教學設計), 唯在 11 的整除性檢定法,與其它的略有分別,老師需要引導學生觀察以 11 除各位值時,餘數 1 和 10 是交替出現,只要將奇、偶數位值的餘數湊合,便能得出奇偶位差法。


至於 6 的整除性檢定法的教學設計,則與前述有所不同。6 的整除性 涉及兩個互質因數的整除性的結合,即只要一個整數能同時被 2 和 3 整除,該整數必爲 6 的倍數。觀乎現今一般教科書的處理手法,大都以十行表來顯示 6 的倍數與其因數 2 和 3 的關係(可參考林、陳(2002),《現代數學》 4 上 B 冊),一來欠缺普遍性,二來由於沒有強調其因數 2 和 3 是互質的關係,容易混淆學生,使誤以爲所有合成數都有這樣的特性。事實上,6 有這樣一個整除性不單單是因爲 2 乘以 3 等於 6 這個關係,還因爲 2 和 3 是互質的(證明見上文定理 1)。然而,在小學四年級這階段,學生是未曾接觸過互質概念。面對這種情況,只有繞過互質概念,放棄證明的普遍性,追求能用於此特殊情況(即某數是 2 和 3 的公倍數當且僅當它是 6 的倍數)的解說。因此在演繹上,最重要的考慮是如何以具體的手法,令學生理解不是所有的合成數均有這種特質,並明白其衍生的過程。

在這發展脈絡上,最直接的方法就是向學生提出反例子,例如:20 可以分別被2和4整除,但卻不能被8整除。接著,更可進一步以數粒向學生展示推論過程。


以下是具體的處理手法:

能被6整除必定能被2和3整除				
1.	能被6整除的整數	,以數粒表示	,即可以每6岁	粒一組,沒有剩餘
	\bigcirc	\bigcirc \bigcirc		\bigcirc
	\bigcirc	\bigcirc		\bigcirc
	\bigcirc	\bigcirc		\bigcirc
2.	引導學生觀察其排列	河,得出6的位	音數必定能排	成2粒一組及3粒一組
			•••	
同時是2和3的倍數必定能被6整除				
3.	先由2的倍數開始	,利用數粒排品	出2的倍數(必成兩排同長)
	\bigcirc \bigcirc \bigcirc \bigcirc		\bigcirc \bigcirc	
	\bigcirc \bigcirc \bigcirc \bigcirc		\bigcirc	
4.	在分兩排的情況下	,每排獨立進行	行每3粒一組	:
	可能性一			
		$\bigcirc \bigcirc \bigcirc$		


可能性二

可能性三

5. 觀察得出:同時是 2 和 3 的倍數,可能性一和二不會出現。剩下可能性三心定能滿足每 6 粒一組排列,沒有剩餘

6. 若時間許可,可以用上述的方法考慮 8 的整除性不可能由 2 和 4 的整除性推得,即 2 和 4 的公倍數不一定是 8 的倍數(這樣可以進一步鞏固學生對證明關鍵的理解)。

回顧整個展示過程中,是以學生的已有知識出發,並以具體的數粒操作作爲引導,並沒有涉及超乎學生的知識和能力,使學生能順暢地理解整性檢定法的由來。

三、數學思想和方法。骨架方案中的教學軌道須充分體現數學思想發展,和具一般性的數學方法(馮,2004)。上述的教學軌道,說穿了,只是同餘概念的具體演示。這樣的「化大爲小」,去除阻人視線的大部份,著眼探討關鍵的小部份,是重要的數學思想,能開眼界,對學生實有莫大的益處。爲了配合此觀點,是次教學的整體設計均以十進制積木作爲貫穿,換算的操作與模式相近,至於工作紙的設計亦與課堂上的換算操作相似,讓學生按照統一的軌道,思考出其他的整除性,有助學生培養有系統的數學思維。

執行方案

在執行方面,需要以骨架方案爲主幹,就課堂的限制作出微調,成爲 合用的執行方案,以下根據可行性、差異處理和數學語言三方面透視執行 方案的布置:

四、教學設計在實踐的課室環境需要具備一定的可行性(馮,2004)。 根據骨架方案,最理想的教學就是讓學生有機會親身利用十進制積木進行 換算,然而礙於物資的限制,唯有改以教師作黑板示範,透過提問,鼓勵 學生參與討論演化的過程。另外,由於課時所限,未能每一個整除性均詳 細論及,考慮到 4、8、3、9、11 的整除性分析方法較爲接近,無太大壓縮 的空間,決定在 6 的整除性上只作簡略介紹。

五、教學設計需有措施舒緩差異對教學發展構成的壓力(馮,2004)。 是次研究,並未有詳細的考慮舒緩差異的措施。然而,重複出現的「按位 值考慮餘數」的策略,應可照顧能力不同的學生的進度差異。

六、教學設計要照顧孕育適當數學語言的需要(馮,2004)。在此課題,要特別培育學生對位值描述的準確性,例如:在4的整除性上,只要刪去百位以上的數字後,剩下的兩位數能被4整除,其原數便能被4整除,但決不能說成「只要最後兩個數字能被4整除,其原數便能被4整除」。另外,如何引導學生有條理地說清辯證過程,也是一重要的關注點。要達至以上兩個重點,老師除了要掌握準確的表達外,還須要求學生以正確、完整的數學語言回答及陳述。在工作紙的設計方面,亦刻意將整個辯証過程及模式由黑板搬到紙上(附件三、四),讓學生自己有多些機會體驗其過程,從中學會準確的表達。

課堂實踐:學生學習的成效

筆者之一曾就設計於四年級中進行一次試驗,根據工作紙(附件三)中學生的整體表現,顯示全班四十名學生均能順利地掌握整除性發展的思考過程,其中超過八成的學生更能單靠工作紙(附件四)的協助,進行模仿,從而自行找出3的整除檢定法。另外,依據對四位能力不同的學生所進行的問卷調查(附件五)顯示,雖然他們的學習存在差異,但四位均能準確說出各個整除檢定法,當中有中等或以上能力的學生已能正確地理解及轉述4和8的整除檢定法背後的原理,數學能力較高的學生更能進一步

清楚地演示 9 的整除檢定法的由來,顯示對課題有高度理解,而能力稍遜的學生亦表示對課題甚感興趣。因此,有理由相信,以十進制積木作爲演繹推理的媒介,是有效的教學設計,能把具體的實物操作爲思考的起點,總結出數學產物。這樣既有助學生對各整除檢定法的記憶,減少混淆情況的出現,亦能向學生介紹有效的數學思考模式。

然而,在施教的過程中,並不是一面倒的順利。根據上文提及是次有關 8 之整除性的教學設計,放棄了以教科書提供的較複雜的版本:「一個數的最後兩位數是 4 的倍數,不是 8 倍數,而百位數字是單數時,這個數便可以被 8 整除。一個數的最後兩位數是 00 或 8 的倍數,而百位數字是雙數時,這個數也可以被 8 整除。」,改以較適合學生理解的定義:「一個數的個、十、百位所組成的數是 8 的倍數時,這個數便可以被 8 整除。」但發現學生的學習文化慣於依賴教科書的內容,即使不理解箇中原因,學生也是自然地傾向背誦。由於學生不明所以,導致背誦錯漏百出,教學上有一定的困難,耗掉了一些時間。

改良建議

在施教之後,發現除了數學語言的運用仍需改善外,教學設計亦有修訂的空間。首先,在前文提及,工作紙是一件有效引導學生的工具,使他們利用已學的思考過程,自行歸納其他的整除性。以3的整除性檢定爲例,此課題是緊貼9的整除性檢定之後,自己只是著學生完成工作紙(附件四),學生便能根據工作紙所得的經驗,說出3的整除性檢定法及其背後原因,並不需要額外的課節來教授。因此,工作紙在整個教學流程中的角色,可以更重要,由只在3的整除性中使用,推廣到8、11的整除性上。相信這會令學生的學習自主性增強,刺激思考。

最後,我們認為在 6 的整除性部分,可變得更具啓發性,在進行前述的教學步驟之前,可以著學生以前幾節的經驗,先觀察各位值的餘數,從中找尋關係,就各十位以上的位值除以 6 均餘 4 的現象,討論可行的整除性檢定法,如:將十位以上的數字相加,將總數再乘以 4,最後加以個位的數值,所得的總和如能被 6 整除,原數便能被 6 整除。再通過驗算,讓學生自行確定方法是否正確,增加學習興趣。接著再提出是否可透過 2 和 3 的的檢定法檢查 6 的整除性的探討,待得到結論後再與已知方法比較,著學生評價兩個方法的優劣,加深學生對整除性檢定法的認識。

結論

總結是次研究的經驗,發覺在數學化觀點的指導下,教學的設計不但能配合學生的能力與經驗,更會讓他們經歷數學衍生的過程,一方面漸進地鞏固概念的掌握,另一方面培養學生以具一般性的數學方法去思考問題。以整除性一課題爲例,從前學生只能著眼於技術上的運用,只要熟背法則便足夠。如今透過具體物操作的輔助,再創造各個整除性檢定法則,使能體驗數學獨特的思考模式。這樣的學習經驗,不但有助學生理解整除性,亦可加深學生對位值、除法意義的認識,能提升學生的數學修養。

參考文獻

- Freudenthal, H. (1973). *Mathematics as an educational task*. Dordrecht: D. Reidel Publishing Company. (陳昌平、唐瑞芬等譯(1995)。《作爲教育任務的數學》。上海:上海教育出版社。)
- Freudenthal, H. (1991). *Revisiting mathematics education*. Dordrecht: Kluwer Academic Publishers. (劉意竹、楊剛等譯(1999)。《數學教育再探》。上海:上海教育出版 社。)
- Wittmann, E. Ch. (1995). Mathematics education as a 'Design Science'. *Educational Studies in Mathematics* 29(4), pp.355 374. (reprinted in A. Sierpinska, and J. Kilpatrick (eds.), *Mathematics education as a research domain: A search for identity, vol.* 1, 1998, 87 106. Dordrecht: Kluwer Academic Publishers.)
- Wittmann, E. Ch. (2001). Developing mathematics education in a systemic process. *Educational Studies in Mathematics* 48(1), 1-20.
- 文耀光、梁志強、吳銳堅(2000)。《基礎數學引論》。香港:香港教育圖書公司。
- 林秉明、陳卓堅(2002)。《現代數學》4上B冊。香港:現代教育研究社。
- 香港課程發展議會(2000)。《數學課程指引(小一至小六)》。香港:教育署。
- 馮振業(1999)。數學化教學:從夢想到現實。載於黃毅英、黃家鳴(編),《基礎數學教育的優化研討會論文集》,4 46頁。香港:香港中文大學教育學院課程與教學學系。
- 馮振業(2004)。數學化教學:理論、實踐與前膽。載於鄧幹明、黃家樂、李文生、莫雅慈(編),《香港數教育會議 2004 論文集》,78 88 頁。香港:香港數學教育學會。
- 馮振業、王倩婷、葉嘉慧、何妙珍(2000)。《數學化教學 除法》。香港:作者。

附件一: 骨架方案流程圖

根據以上的各個考慮,發展出以下的骨架流程圖:

定義

向學生清晰地介定整除的定義:可被某數 整除的整數,一定可以該數爲單位分組。

2、5和10的整除性

利用十行表,透過觀察,幫助學生綜合出 其整除性。

4的整除性

透過十進制積木,向學生展示4的整除檢定法則。

8 的整除性(可讓學生自行發現) 以 4 的整除性之思考過程爲基礎,在十進制積木的協助下,鼓勵學生考慮位值,思考出 8 的整除檢定法。

9的整除性

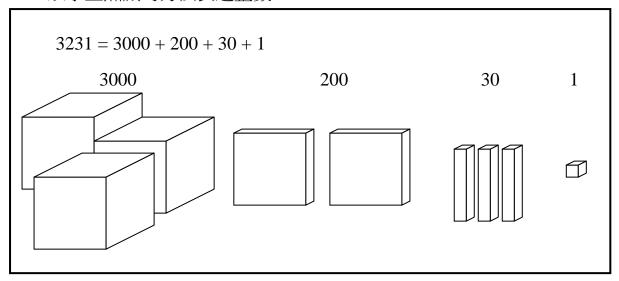
利用十進制積木,按各個位值被 9除後的餘數,進行演化,引導 學生以整除的定義爲基礎,想出 只要各位值上的餘數之和能被 9整除,該數便能被9整除,因 而衍生9的整除檢定法。

3 的整除性(可讓學生自行發現) 以 9 的整除性之思考過程爲基 礎,在十進制積木的協助下,思 考出 3 的整除檢定。

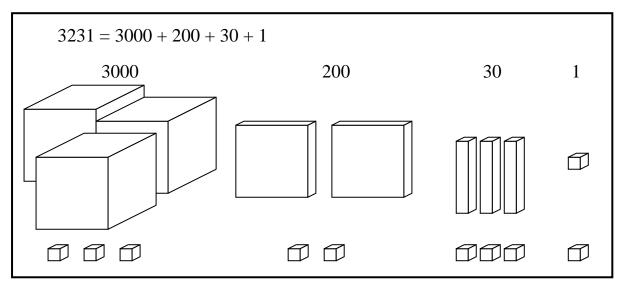
11 的整除性

引導學生留意各位值的除以 11 後,所得餘數的規律,從而想到 其整除性檢定法。

6的整除性

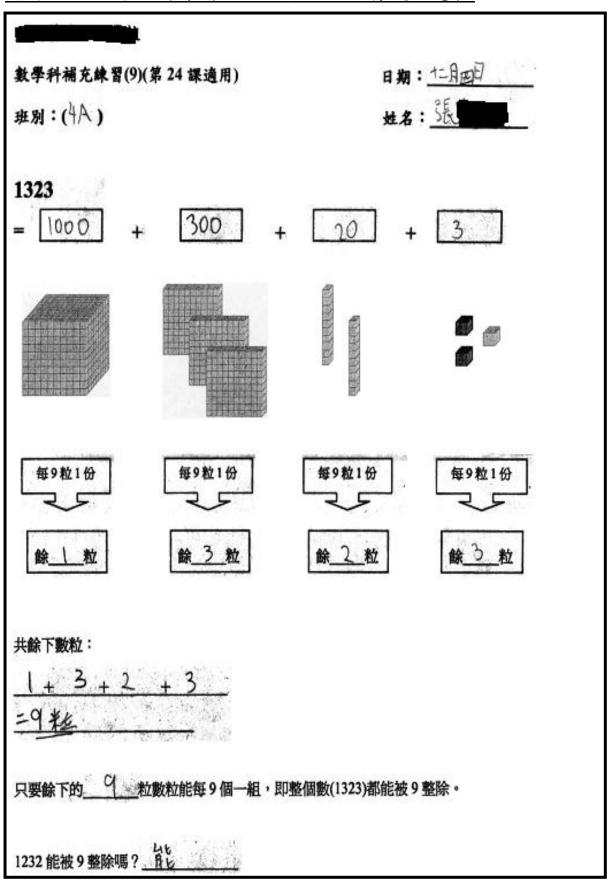

以數粒向學生展示 6 的倍數,同時一定能被 2 和 3 整除,相反地,同時是 2 和 3 的倍數之數值,必定是 6 的倍數。

數學教育第二十期 (6/2005)

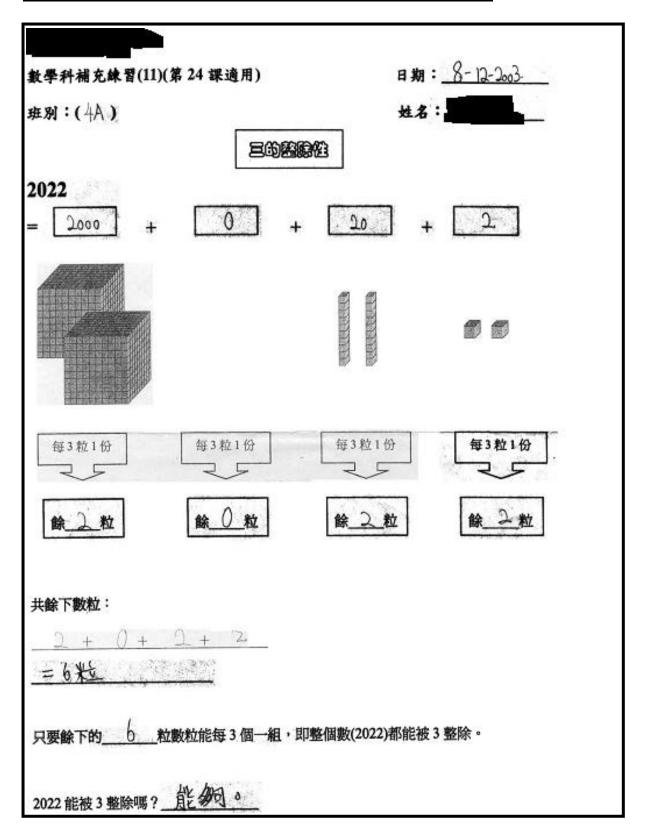

附件二:9的整除性

9 的整除性檢定法與 4 和 8 的整除性檢定法雖有分別,但亦能透過十進制積木的操作,將其法則的衍生過程表達出來。以下是詳細的過程:

1. 以學生熟識的方法表達整數



- 2. 引導學生觀察每一個數值,得出各位值(1、10、100、1000...)均不 能被9整除,但卻有一特點:十位、百位、千位...被9除均餘1
- 3. 因而得出 3 個 1000 的十進制積木每 9 粒一數便餘 3 粒, 2 個 100 的十 進制積木每 9 粒一數便餘 2 粒、3 個 10 的十進制積木每 9 粒一數便餘 3 粒、以及餘下個位的數目



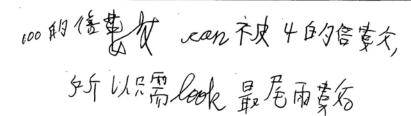
4. 最後得出:餘下的所有數粒的總和(即所檢數各位數字的總和)能被 9整除當且僅當原數便能被9整除,亦即:3+2+3+1能被9整除當 且僅當3231能被9整除。

附件三:工作紙(有關9之整除檢定的背後理念)

附件四:工作紙(有關3之整除檢定的背後理念)

附件五:不同數學能力學生的訪問結果

一、高能力學生之問卷


第一頁

有關整除性課題的問卷調查

1 基麼數能被4整除?

军雨數是〇〇或是4的倍數人

- 2. 你能向同學解釋 4 的整除性是如何得出的嗎?
- 3. 你會用甚麼方法解釋(可用文字或用圖畫表達)?

4. 甚麼數能被8整除?

军三英处的个信要女。

- 5. 你能向同學解釋 8 的整除性是如何得出的嗎?
- Yes/No
- 6. 你會用甚麼方法解釋(可用文字或用圖畫表達)?

图1000的信息人群。如序及八整片

7. 甚麼數能被 9 整除?

新存數相力~ cantag整了。

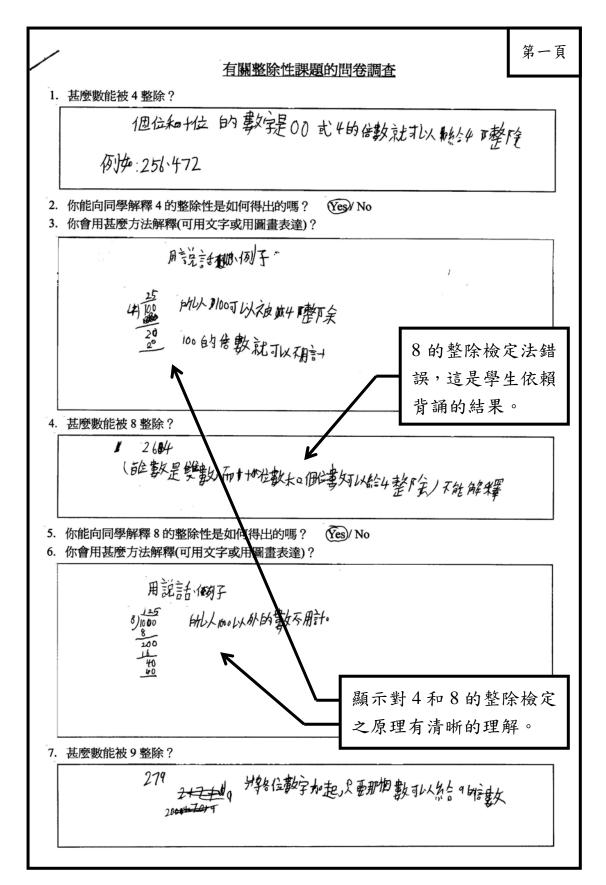
8. 你能向同學解釋 9 的整除性是如何得出的嗎?

第二頁

9. 你會用甚麼方法解釋(可用文字或用圖畫表達)?

2311=2000 1300+10+1 1/1/2 1 300-9 10-9

表達雖欠完整,但足 以顯示對 9 的整除檢 定原理有充分理解。

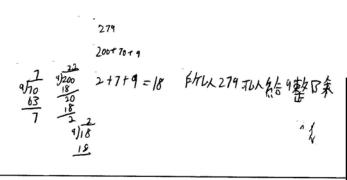

=x....2 =x...... =x...... 1

2+3+1+=7 STIL can't trine

10. 你對整除性一課題有甚麼感想?

an learn somany about 那東 直X能在於其外於了

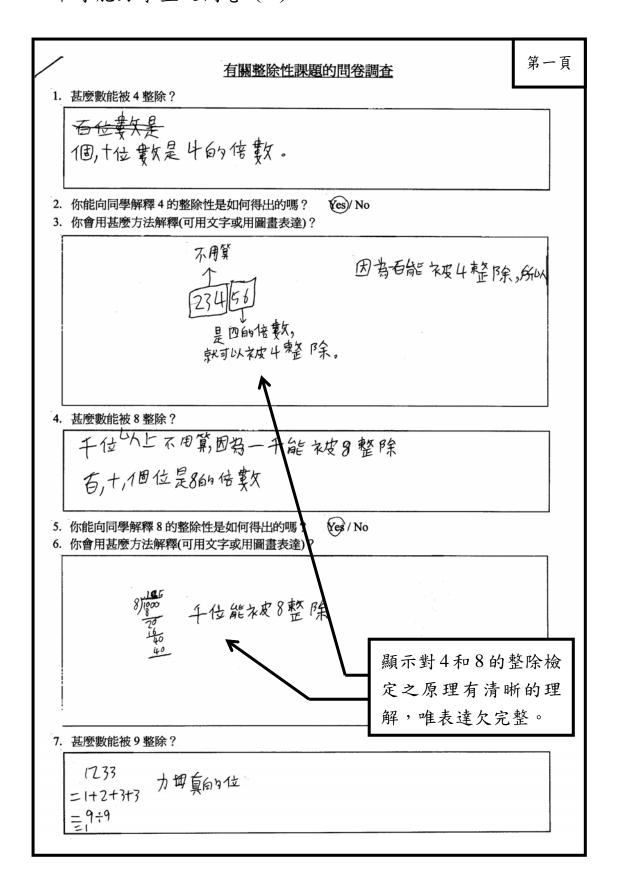
二、中等能力學生之問卷(1)



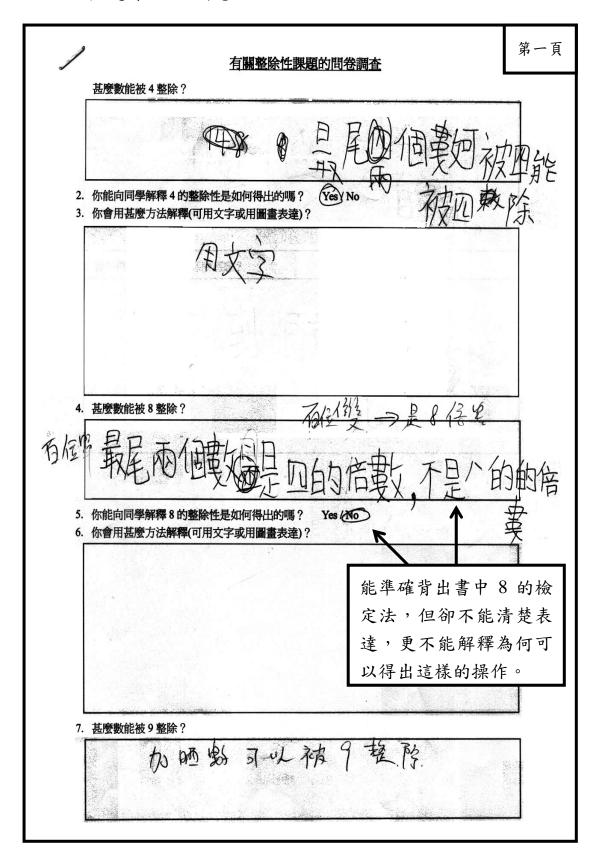
. 你能向同學解釋 9 的整除性是如何得出的嗎?

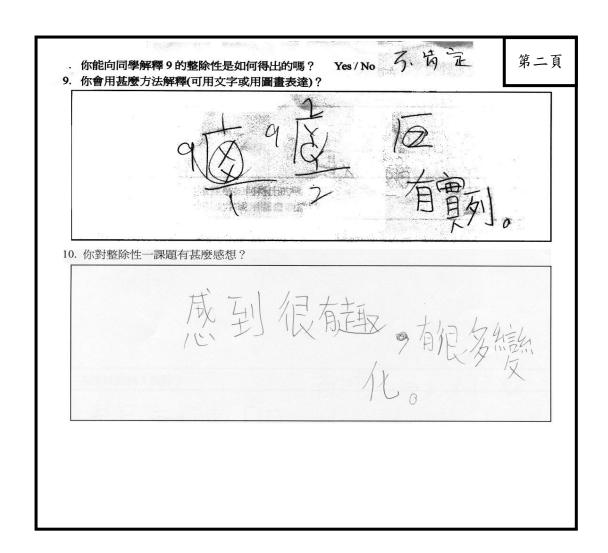
第二頁

9. 你會用甚麼方法解釋(可用文字或用圖畫表達)?



只能演示其檢定 的操作,未能清楚 指出其背後原理。


10. 你對整除性一課題有甚麼感想?


很容易,因為對這個表。就能很快計算

二、中等能力學生之問卷(2)

三、能力較遜學生之問卷

