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A dynamic approach to ‘simple’ algebraic curves 
“Both didactic theory and practice of 
computer-assisted mathematics teaching 
always reflect the latest state of software 
development, which is considered the 
non plus ultra.” 

Prof. Dr. Heinz Schumann 
Faculty III, Mathematics/Informatics, 
University of Education Weingarten 

1. Introduction 
In these days of reduced mathematical awareness – when mathematical 

education within context of international student assessments like PISA is 
focused on so-called “standards of mathematical education” and “core 
curricula”, − it may be questionable to propagate a mathematical topic which 
has seldom found its way into the curricula of school mathematics, although its 
treatment already has a long lasting methodical and didactic tradition. 

The subject of “Algebraic Curves” should be re-evaluated for the purposes 
of general teaching projects, course work projects, working groups and 
extracurricular mathematics e.g. for gifted students in consideration of newly 
developed and adequate dynamic geometry computer tools.  The arguments for 
the treatment of algebraic curves using computers in school geometry brought 
forward by Schumann 1991, Weth 1993, Schumann & Green 1994, Schupp & 
Dabrock 1995 and others still apply, and we shall repeat them here in brief. 

The following points favour the treatment of algebraic curves: 

 Algebraic curves bridge the gap between (synthetic) geometry and algebra 
 they offer a variety of problems, solution strategies and relationships of 

mathematical interest  
 they are of a generalising nature 
 they support modelling activities 
 they enhance functional and operative thinking 
 they play an important role in the history of mathematics 
 they are aesthetically pleasing. 

Computer Algebra Systems and Dynamic Geometry Systems (DGS) are 
excellent exploration and reconstruction media for approaching the subject of 
algebraic curves.  We shall therefore treat algebraic curves in context, using 
computer tools that are available in the classroom.  These tools should be 
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menu-controlled as they are used only temporarily and by novices, therefore 
command-controlled tools will not be discussed here.  Of course, sufficient 
mathematical knowledge is required for successful computer-assisted treatment 
of algebraic curves. 

Generally speaking, algebraic curves are represented as follows: 

An algebraic curve is the zero-set of a polynomial in  x  and  y  
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in which  aij ∈ R ;  max(i + j)  with  aij ≠ 0  is the degree of the algebraic 
curve.  This algebraic equation is an object of algebra while the corresponding 
graph is an object of synthetic geometry. 

The following diagram (Schumann 2001) will serve to illustrate the options 
of representation and interaction using the computer tools currently available: 

 
Diagram 

: “Classical” algebraic curves are constructed with compass and ruler; the 
constructions generally have no more than two parameters defining shape and 
position.  Dynamic Geometry systems (DGS) can illustrate the point-by-point 
generation using the trace mode, which supports the point-set interpretation of 
curves (see, e.g. Schumann 1991).  Dynamic variation of parameter values (e.g. 
for investigating various cases and for generating families of curves) requires 
that one must be able to generate them as referenceable graphic objects not only 
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as states of the screen.  The corresponding graph is generated by dynamic 
interpolation of supporting points (with rounded coordinates depending on the 
system arithmetics).  

These curves may be constructed by different methods, e.g. as foot curves, 
slide point curves, cissoids, conchoids, rolling curves, image curves at specific 
transformations etc. Constructions of curves as envelopes will not be considered 
here. 

: The option “Repeat Construction” will give us the construction method 
for any of the constructed curves.  

: Cabri Géomètre II+ (www.cabri.com) is the only DGS among those 
available on the market, that bridges the gap to algebra by determining the 
representation of an algebraic curve as the zero-set of a polynomial in  x  and  
y  with correspondence to a selected coordinate system.  For this, Cabri 
Géomètre II+ uses a numeric algorithm which provides satisfactory results for 

algebraic curves  P(x , y)=  up to the 60
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th degree.  (Roughly, 

the algorithm can be described as follows:  Random selection of about 100 

supporting points of the generated curve; calculation of the  2
)2)(1( ++ nn

  

coefficients of  P(x , y) = 0  of degree  n  using a suitable system of 
equations derived from the point coordinates starting with  n = 1  until the 
rest of the selected points approximately issues zeros of  P(x , y) = 0 .)   

: Visual testing of the correctness of the resulting algebraic curve is 
possible using a mathematics software capable of plotting implicit functions.  
Among the menu-controlled software tools, DERIVE (derive-europe.com) 
offers this option.  

: It is possible to achieve a static graphic generation of an (algebraic) curve 
from a parametric or polar coordinate representation using suitable software 
systems or modules for plotting functions.  Dynamic generation of graphic 
curve objects by DGS from these representations using direct manipulation for 
variation of running parameter values is much more impressive, because the 
user is able to observe the curve creation by trace mode individually applying 
slider techniques.  

: There is no (published) computer tool, as yet on the market, which 
generates the parametric or polar coordinate representation for an algebraic 
curve given as an adequate constructed computer graphic object.  The 
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prototypic “paramGeo” Package (Roanes-Lozano et al. 2003) for MAPLE 
(maplesoft.com) or DERIVE is able to generate these representations). 

This ends the summary of the general technical facilities of computer tools 
in as far as they are of relevance to this article.  

The derivation of the algebraic equation  P(x , y) = 0  from the 
synthetic-geometric construction of a curve is interesting and fruitful from the 
mathematical point of view because this derivation provides – independent of 
the experimental and inductive methods of knowledge finding – mathematical 
insight and argumentation for the algebraic equation produced by Cabri II+.  In 
the case of algebraic curves of 2nd degree, so-called conic sections, an 
analytic-geometrical derivation of the algebraic equation could be achieved due 
to adequate constructions.  That is not possible in general in the case of 
algebraic curves of higher degree; the derivation needs a parametric 
representation or a polar coordinate representation and elimination or 
substitution of the parameters from these representations may induce difficult 
calculation problems.  

2. A method for the treatment of ‘simple’ algebraic curves 
The following method combines geometry and algebra as well as inductive 

and deductive methods of knowledge acquisition or knowledge verification and 
requires only elementary mathematical knowledge. 

We shall term an algebraic curve (AC) as “simple” in this context if 
integral construction parameters are inducing integral coefficients of the 
corresponding algebraic equation with regard to a suitable Cartesian coordinate 
system.  Almost all the classical algebraic curves can be treated as simple 
curves. 

1) Construction of the AC with a DGS (here: Cabri II+) according to 
instructions and phenomenological description. 

2) Variation of the construction parameter values in order to observe and 
describe the changes in position and shape of the AC.  If helpful, 
generation of an animated graph. 

3) Embedding the constructed AC in a suitable Cartesian coordinate system.  

4) Automatic determination of the algebraic equation  P(x , y) = 0  of 
the AC with respect to the chosen coordinate system and testing the 
equation. 

5) Linkage of the construction parameter objects to grid points of integer 
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coordinates and with grid snap for restriction to integral construction 
parameters. 

6) Experimental-inductive identification of the coefficients in  P(x , y) = 
0  and control of these coefficients as a function of the construction 
parameters.  (Eventually inductive graphic verification of  P(x , y) = 0  
for non-integral parameters using a computer algebra system, e.g. 
DERIVE.) 

7) Mathematical verification of  P(x , y) = 0 
 Direct analytic-geometrical derivation of  P(x , y) = 0  from the 

construction description of the curve or, if that is not possible:  Derivation 
of the parametric or polar coordinate representation from the construction 
description; dynamic generation of the AC according to these 
representations for control; elimination or substitution of the running 
variables or parameters, also using a CAS (e.g. DERIVE). 

3. Application of the method 
In the following, this method will be applied to classical algebraic curves 

of the 3rd, 4th and 6th degree.  Conic sections, which can be treated the same, 
will be left out. − Not all the instructions of the method will be explained in the 
following examples; the details of the computer software functions are not 
described. 

Example 1 (Cissoid) 
The cissoid lends its name to a whole class of algebraic curves, which are 

constructed with the same construction principle.  It is used for example in the 
geometric solution of the Delian problem (duplication of the cube). 

1) How to construct the curve:  

 Construct a circle of diameter  OA  (construction parameter). 
 Construct a tangent in  A  perpendicular to the diameter  OA . 
 Put one on the circle movable point  K . 
 Construct a ray with the initial point  O  through  K  which intersects 

the tangent in  G . 
 Lay off line segment  KG  from  O  on to this ray. 

Which locus describes  P ,  if  K  moves in a circle? 

2) The resulting locus is the cissoid (Fig. 1.1), which is symmetric to  OA  
and has a pointed end in  O  and the tangent as asymptote. 
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Fig. 1.1: A cissoid’s construction Fig. 1.2: A suitable cissoid’s embedding

3 & 4)  Cabri II+ generates an algebraic equation of the third degree when we 
embed the curve in a Cartesian coordinate system  (Fig. 1.2 with  O  as 
origin and with diameter  OA  on the positive  x-axis).  Because of its 
symmetry to the  x-axis there are only  y-terms with even exponents in the 
summands.  We confirm experimentally the correctness of the equation with 
point testing (Fig. 1.3). 

 
Fig. 1.3: Testing cissoid’s equation 

5 & 6)  The dependences between parameter  a  and the coefficients of the 
equation could only be recognised when  A  is linked to the integral grid and 
the integral values of parameter  a  are varied (Figs. 1.4 & 1.5). Only 
coefficient of the  y2-term depends on  a ;  it equals  a  and the resulting 
equation of the curve is:  
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 x3 + xy2 − ay2 = 0 ..................................... (1.0) 

which can be confirmed by further variation of integral values of parameter  a . 

 

Fig. 1.4:  
Investigating coefficient’s dependency Fig. 1.5 

We extrapolate the result for non-integral parameter values, e.g. by plotting 
curves of equation (1.0) with DERIVE (see the example in Fig. 1.6 for an 
approximate value of  a = 10 ). 

 

Fig. 1.6: Equation testing with DERIVE Fig. 1.7: Deriving the 
algebraic equation 

7) Fig. 1.7 shows the analytic-geometrical derivation of the algebraic equation.  
Ray  OG  has the slope  x

y   and, correspondingly,  G  has the coordinates  
(a , x

ay ) .  After construction,  P  has the coordinates  x = a − xk  and  y = 

x
ay  − yk ,  i.e. for  K : xk = a − x  and  yk = x

ay  − y .  Substitution in 

equation of the circle  (x − 2
a )2 + y2 = ( 2

a )2  results in  (a − x)2 + 2

2

x
y (a − x)2 

− a(a − x) = 0.  Division by  a − x ≠ 0  (x = a  is not a point of the cissoid) 
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and multiplication with  x2 ≠ 0  result in 

 x3 + xy2 − ay2 = 0 . 

Generalisation:  We shall now generalise the cissoid into the so-called 
hypo-cissoid, by constructing the perpendicular  AG  on the positive  x-axis 
in an arbitrary grid point.  (Fig. 1.8).  It is easily recognised that the 
corresponding two-parameter curve obeys the equation  x3 + xy2 + (d − a)x2 − 
ay2 = 0 ,  in which  (a − d)  is the  x-coordinate of the point of intersection 
of the curve with the  x-axis.  In case of  (d − a) > 0 ,  in Cabri the 
hypo-cissoid must be composed of two partial curves, which are created by  K1  
resp.  K2  positioned on the circle arcs separated by the perpendicular line 
through  A .  (Fig. 1.9).  The animated graph in Fig. 1.10 shows the different 
shapes of the hypo-cissoid for  0 ≤ a ≤ d0  and for  d0 ≤ a  (in the case of  
a = d0  the cissoid is clearly visible separating the curves with  (d0 − a) > 0  
resp.  (d0 − a) < 0) . 

  
Fig. 1.8:  

Hypo-cissoid, case  (d0 − a) < 0 
Fig. 1.9:  

Hypo-cissoid, case  (d0 − a) > 0 

 
Fig. 1.10: Hypo-cissoid’s animation for parameter  a  

9 



數學教育第十八期 (6/2004) 

Example 2 (Pascal’s limaçon – or Pascal’s snail) 
Pascal’s limaçon is named after Stephan Pascal, the father of the famous 

Blaise Pascal.  It can be constructed in several ways.  We shall start with its 
construction as a foot curve (Fig. 2.1): 

 Construct a circle with centre  M  through  R  and then a point  P  
(pole), first positioned outside the circle,  i.e. with  | PM | > | MR | = r .  
Put a movable point  B  on the circle and construct the circle tangent in  
B . 

 Drop the perpendicular from  P  to the circular tangent with foot  F . 

What is the locus of  F  if  B  circulates? 

  
Fig 2.1:  

A construction of Pascal’s limaçon 
Fig. 2.2:  

Variation of  | PM |  values 

The resulting locus is Pascal’s limaçon, and we can change its shape and 
position by varying the parameter values for  | PM |  (Figs. 2.2 & 2.3) and for  
| MR | = r  (Fig. 2.4; there must be a gap in the animated graph for  r = 0 ). 

 
 

Fig. 2.3: Animation of  Fig. 2.4: Animation of  
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Pascal’s limaçon for  | PM | Pascal’s limaçon for  r 

In Cabri II+ we are now going to embed the construction in a coordinate 
system such that  M  coincides with the coordinate origin and  P  is on the  
x-axis (Fig. 2.5).  For this curve, we let the computer calculate the equation 
P(x , y) = 0  with respect to this coordinate system.  The equation is of 4th 
degree and shows at  y  only even exponents in accordance with its symmetry 
property.  In addition, we make a point test to convince ourselves of the 
correctness of the black box output. 

 
Fig. 2.5: Embedding Pascal’s limaçon and equation testing 

  
Fig. 2.6 Fig. 2.7 

  

11 



數學教育第十八期 (6/2004) 

Fig. 2.8 Fig. 2.9 
Investigating the dependencies of the coefficients from construction parameters 

We can see that the partial expression  x4 + 2x2y2 + y4 = (x2 + y2)2  does 
not depend on the parameters  p  and  r .  Variation of the integral 
parameter values for  p  (e.g. as in Figs. 2.6 − 2.9; Fig. 2.7 shows the cardioid 
curve with its “heart-shaped” contour) and for  r  shows that each of the 
coefficients of  x3  and of  xy2  equals  2p ,  that the coefficient of  y2  
equals  −r2  and – with some intuition in arithmetics – that the coefficient of  
x  equals  2pr2  and that the constant summand equals  −(pr)2 .  Tabulation 
may be helpful if this is not obvious at once.  Of course one immediately tests 
the suspected dependences by variation of the parameter values of  p  and  r . 
For example, the coefficient of  x2  can be found with the aid of the table 
below, which shows that the coefficients (e.g. for  r = 3 ) create an arithmetic 
sequence of 2nd degree.  With fixed  r  the coefficient of  x2  is a quadratic 
form  c2 p2 + c1 p + c0 .  

p −1 −2 −3 −4 −5 … r = 3 
x2 −8 −5 0 7 16 … 

 +3 +5 +7 +9 … 

This means that  c2 , c1 , c0  can be derived from the following system of 
equations: 

 −8 = c2(−1)2 + c1(−1) + c0  
 −5 = c2(−2)2 + c1(−2) + c0  
 0 = c2(−3)2 + c1(−3) + c0  

One finds  c2 = 1 , c1 = 0 , c0 = −9 ,  i.e.  p2 − 9 = p2 − 32  and 
presumably  p2 – r2 ,  which is verified experimentally.  Finally, the 
following equation is obtained by the experimental-inductive method for 
Pascal’s limaçon with respect to the chosen coordinate system: 

 (x2 + y2)2 + 2px3 + 2pxy2 + (p2 – r2)x – r2y2 + 2pr2x – (pr)2 = 0 ....... (2.0) 

The equation can now be verified also for non-integral coefficients in the 
same way as in Example 1, i.e. by implementing the equation for the curve in 
DERIVE and plotting the corresponding curve.  For a mathematical 
verification of equation (2.0), we derive the parametric representation in 
accordance with the foot construction to get the corresponding equation by 
elimination of the running parameter.  Figure 2.10 informs us that:  
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 xB = r ⋅ cos β , yB = r ⋅ sin β ............................. (2.1) 

 tangent equation: β
β

−=
−
−

sin
cos

B

B

xx
yy

 .............................. (2.2) 

 equation of the perpendicular: β
β

=
− cos

sin
px

y
 ................................ (2.3) 

 
Fig. 2.10: Deriving the algebraic equation 

After resolving of (2.2) or (2.3) to  y  and equating we obtain the  
x-coordinate of the foot of the perpendicular  F : 

 x = p ⋅ sin2 β + r ⋅ cos β ................................ (2.4a) 

and replacing  x  in (2.3) by (2.4a), the  y-coordinate of  F  results in: 

 y = sin β ⋅ (r − p ⋅ cos β).................................. (2.4b) 

Can we confirm that the parametric representation in (2.4) is that of the 
Pascal’s limaçon?  To verify this, we dynamically generate the corresponding 
curve using slider technique (Fig. 2.11).  There are slides for the shape or 
position parameter  p , r  and there is a slide for the running parameter  β .  
We are now able to observe the creation of the curve, either user-controlled or 
via animation, while the curve plotting functions of non dynamic mathematics 
software will show the curve only as a black box result. 
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Fig. 2.11: Parametric representation of Pascal’s limaçon 

Elimination of the running parameter  β  is more difficult.  Using a 
quadratic equation for cos β ,  after some algebra supported by CAS, e.g. by 
DERIVE, obtain an equation that is equivalent to the equation presented in (2.0).  
Using the elimination command of the powerful tool MATHEMATICA, we will 
at once arrive at the desired result provided that we first express Sine by Cosine 
(Fig. 2.12). 

 
Fig. 2.12: Automatic elimination of the running parameter with MATHEMATICA 

  
Fig. 2.13 Fig. 2.14 
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Fig. 2.15 Fig.2.16 

Pascal’s limaçon as conchoid of the circle − investigating the coefficients 

In the following, we discuss the corresponding treatment of Pascal’s 
limaçon as a conchoid of the circle (Fig. 2.13). − The conchoid of a curve  k  
with respect to a pole  O  consists of all points  P  to which the following 
applies:  If  K  is a variable point on  k  and  l  is a fixed length,  OKP  
will be located on a straight line, and  | OP | = | OK | + l  or  | OP | = | OK | − l.  
Construction parameters are the diameter of the circle  a  and the length  l .  
Similar to the case of the curve constructed at the foot of the perpendicular, 
variation of integral parameter values (Figs. 2.13 – 2.16; variation of  l ) will 
give us the following dependences of the coefficients with respect to the 
coordinate system chosen:  

 (x2 + y2)2 − 2ax3 − 2axy2 + (a2 − l2)x2 − l2y2 = 0 ............... (2.5) 

From the conchoidal construction we can easily read the polar coordinate 
representation (Fig. 2.17): 

 ρ = a ⋅ cos ϕ ± l ...................................... (2.6) 

 
Fig. 2.17: Deriving the algebraic equation 
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From which we can dynamically generate the curve of Pascal’s limaçon 
(Fig. 2.18).  Using  cos ϕ = ρ

x   and  ρ = 22 yx +   from (2.6) easily 
follows the equation  (x2 + y2 − ax2)2 = l2(x2 + y2) ,  which is equivalent to 
(2.5) − on the contrary to the elimination of the running parameter at the 
parametric representation. 

 
Fig. 2.18: Polar coordinate representation of Pascal’s limaçon 

Another interesting algebraic curve of the 4th degree is the conchoid of 
Nicomedes (Figs. 2.19 − 2.21), which is a conchoid of the line the 
corresponding treatment of which is left as an exercise. 

 
Fig. 2.19 Fig. 2.20 Fig. 2.21 

Nicomedes Conchoid’s construction and equation 

Example 3 (Astroid) 
As an example of the construction of algebraic curves as rolling curves we 

select the astroid which is generated by rolling of a circle onto a circle (circle 
cycloid) and whose points can be constructed as follows (Fig. 3.1):  
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Fig. 3.1: An astroid’s construction 

 Circle with centre  M  through  R  ( r = | MR | )  
 Put a movable point  P  on this circle and connect it with  M  
 Laying off from  P  the distance  | MP | / 4  on  MP  in direction  

M  and get  M ' 
 Circle around  M '  with radius  | MP | / 4  
 Parallel line to  MR  through  M ' 
 Reflection of  P  with respect to this parallel, reflection of this reflected 

point with respect to  MP  and reflection of this radius with respect to 
the parallel results  A ,  whose angle with respect to the parallel is three 
times as the counter oriented angle  RMP  (proof?). 

What is the locus of  A  if  P  moves on the circle with centre  M ,  
e.g. if the circle with centre  M '  is rolling inside? 

After embedding the construction in the coordinate system with  M  as 
coordinate origin Cabri II+ indicates the algebraic equation of the astroid, which 
is of 6th degree and in which all exponents of  x  and  y  must be even, 
corresponding to the symmetry of this locus (Fig. 3.2). 
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Fig. 3.2: Astroid’s embedding and investigating coefficients 

By varying the size of the construction parameter  r  by dragging of  R  
(Fig. 3.2) we find out that the expressions of degree 6 are independent of  r  
and can be summarised in  (x2 + y2)3 ,  that  x4  and  y4  have the 
coefficient  −3 r2 ,  x2 y2  has the coefficient  3 r2 ⋅ 7 ,  x2  and  y2  have 
the coefficient  3 r 4 ,  and, last but not least, that the constant summand equals  
−r 6 .  The algebraic equation in  x  and  y  can therefore be written as 

 (x2 + y2)3 – 3r2(x4 – 7x2y2 + y4) + r 4(3x2 + 3y2 – r2) = 0 ............. (3.0) 

We verify this equation by drawing the parameter representation of the 
astroid and eliminating the running parameter.  According to the curve 
construction it is valid (Fig. 3.3): 

r ' = 4
r   and  ϕ' = 3ϕ ,   

x = (r − r ') cos ϕ + r ' cos ϕ '  and  y = (r − r ') sinϕ − r ' sin ϕ ' ,  

i.e.  x = 4
r

 ⋅ (3 cos ϕ + cos 3ϕ)  and  y = 4
r

 ⋅ (3 sin ϕ − sin 3ϕ)  and  
therefore follows with 

cos 3ϕ = 4 cos³ϕ − 3 cos ϕ  and  sin 3ϕ = 3 sin ϕ − 4 sin³ϕ : 

 x = r ⋅ cos³ϕ  and  y = r ⋅ sin³ϕ ......................... (3.1) 
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Fig. 3.3: Derivating the algebraic equation 

This parametric representation is dynamically executed for controlling our 
result (Fig. 3.4).  Varying the size of  r  within an interval we get an 
aesthetically pleasing animated graph (Fig. 3.5).  We eliminate  ϕ  by 
extracting the third root and squaring the equations (3.1); addition leads to 

 x2/3 + y2/3 = r2/3 . 

We use a computer algebra system, e.g. DERIVE (Fig. 3.6) to facilitate the 
transformation to an algebraic equation in  x  and  y ;  in doing so, it is 
decisive that line #6 should be substituted by line #1. The result in line #9 is 
equivalent to the inductively found result in (3.0).  

 
Fig. 3.4: Patrametric representation of  

the astroid 
Fig. 3.5: Animation for 

parameter  r 
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Fig. 3.6: Deriving the algebraic equation with DERIVE 

Example 4 (A ‘simple’ coupler curve) 
Out of the numerous constructions of coupler curves we select the 

following: 

 Circle around  F1  through  K  
 Put a movable point  P  on this circle with crank  F1P 
 Reflect  F1  to  O  and get  F2  
 Construct four bar linkage  F2F1PQ  (parallelogram) with coupler  PQ 
 Reflect  Q  to  F2P  and get  Q '  
 Midpoint of  PQ ' :  M . 

What is the locus of  M ,  if  P  circulates? 

Figs. 4.1 – 4.3 show special cases of this curve.  How do the coefficients 
of the algebraic equation for this curve depend on the constructive parameters  
a = | F1F2 |  and  k = | OK | ?  How can the equation in question be derived 
with the coefficients dependent on  a  and  k ? (To be answered by the 
reader.) 

 
Fig. 4.1 Fig. 4.2 
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Fig. 4.3 

Embedded coupler curve with its equation and variation of  k  values 

4. Final notes 
Note no. 1 (Limitedness of the method) 

The method described here will fail if 

 the algebraic curve is of a higher degree than 6, i.e. if the corresponding 
numeric algorithm is inaccurate or if the calculations are too complex  

 the dependences of the coefficients on the integral construction parameters 
is not rational  

 no integral parameterisation of the geometric construction of the algebraic 
curve can be expected, e.g. in the case of loci generated by specific points 
of the triangle if the vertices run on corresponding tracks.  Fig. 5 shows 
an example of such a (point symmetric) locus generated by the intersection 
point of lines through the side midpoints which are parallel to the angle 
bisectors of right triangle  ABC ,  if  C  is circulating. 

 
Fig. 5: An algebraic curve with non-rational parameterisation 
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Note no. 2 (Unsolved problems?) 
In connection with the processing method which has been developed and 

applied in this paper the following problems appear: 

 Among the algebraic curves generated with compass and ruler or with 
conic sections, how can we characterise those with equation coefficients 
which are integer rational functions of their integral construction 
parameters? 

 Among the classical algebraic curves, there are no curves of degree 5 or 7.  
Is this due to the fact that algebraic curves of greater prime number degree 
than 3, which are zero-sets of irreducible polynomials, cannot be generated 
with compass and ruler or by means of conic sections? 

 In the case of algebraic curves constructed with compass and ruler or with 
conic sections, their equations can be calculated by means of Groebner 
bases.  What is the (algebraic) characterisation of such algebraic curves? 

Note no. 3 (Advanced prototypic software tools) 
 In 2002, Oliver Labs developed a new menu-controlled computer tool 

“SPICY” for treatment of algebraic curves and areas which runs under 
Linux.  This tool has not been discussed here as it is not yet available in a 
commercial Windows version.  

 Reinhard Oldenburg (2003) developed a tool named “Feli-X” which is still 
in the experimental and development stage.  It is based on 
MATHEMATICA and consists of a dynamic geometry component which is 
compatible with the computer algebra component of MATHEMATICA.  
Feli-X is capable of calculating the exact equation of the constructed 
algebraic curve with respect to the absolute coordinate system.  The 
reverse, i.e. not just plotting the curve belonging to an algebraic equation 
in  x  and  y  but generating an object that is referenceable in the sense 
of dynamic geometry, raises fundamental problems of “bi-directionality” 
between CAS and DGS.  

 Eugenio Roanes-Lozano et al. (2003) have developed a similar tool 
“paramGeo” based on Maple or DERIVE to bridge Dynamic Geometry 
and Computer Algebra. 

Note no. 4 (Further theoretical studies) 
In his studies on Dynamic Geometry Systems, Gawlick (2001/2003) points 

out further aspects of geometric constructions and such of algebraic curves 
which go beyond our naive and classroom-oriented methodical and didactic 
approach. 
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