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In Form Six Pure Mathematics, the following equations of loci are often 

encountered: 

1. | z − a | = r ; 

2. | z − a | = | z − b | ; 

3. | z − a | = k | z − b |  where  k > 0  and  k ≠ 1 . 

The geometry of the first two equations is obvious.  The first equation 

represents a circle with centre at  a  and radius  r  while the second 

represents the perpendicular bisector of  a  and  b .  The third equation can 

be shown to represent a circle.  This result can be obtained algebraically by 

letting  z = x + yi  and then simplifying.  The third type of equation has 

appeared several times in the Advanced Level Pure Mathematics Examination 

(1998IQ4, 2002IQ2, 2008IQ5).  However, the geometry behind the formation 

of a circle is not evident and rarely discussed in textbooks. 

In fact, for two fixed points  A  and  B  in the plane, if  
PB

PA
 = k  (a 

constant) where  k > 0  and  k ≠ 1 ,  the locus of  P  is called an 

Apollonius Circle (see reference 1).  A brief explanation to this can be found in 

Gow (reference 2).  The authors would like to elaborate the formation of this 

circle in details. 

THEOREM 1  Let  C  be the internal point of division on  AB  such that  

PB

PA
 = 

CB

CA
 = k .  Then  PC  is the angle bisector of  ∠APB . 
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PROOF  Through  B ,  construct a line parallel to  CP .  This line meets  

AP  produced at  H . 

 

 

 

 

 

 

PH

AP
 = 

CB

AC
 = 

PB

PA
 .  Therefore  PH = PB . 

 ∠APC = ∠PHB (corr. ∠s, CP // BH) 

 ∠CPB = ∠PBH (alt. ∠s, CP // BH) 

Q ∠PHB = ∠PBH (base ∠s of isos. ∆) 

∴ ∠APC = ∠CPB   

THEOREM 2  Let  D  be the external point of division on  AB  such that  

PB

PA
 = 

DB

DA
 = k .  Then  PD  is the angle bisector of  ∠BPH  where  

H  is a point on  AP  produced (as shown in the following figure). 
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PROOF  The proof is similar to that in THEOREM 1.  Construct  BK // DP . 

KP

AP
 = 

BD

AD
 = 

PB

PA
 .  Therefore  PK = PB . 

 ∠HPD = ∠PKB (corr. ∠s, BK // DP) 

 ∠BPD = ∠PBK (alt. ∠s, BK // DP) 

Q ∠PKB = ∠PBK (base ∠s of isos. ∆) 

∴ ∠HPD = ∠BPD   

Note that in THEOREM 1 and THEOREM 2, the internal point of division  C  

and the external point of division  D  depend solely on  A  and  B . 

 

 

 

 

 

 

 

Hence,  ∠CPD + ∠BPD = 90°  and  P  lies on a circle with  CD  as 

a diameter. 
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