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A Property of Conic Section 
 

ZHANG Yun 
Xi’an No. 1 Secondary School 

In this article, I will introduce a property of conic section. 

THEOREM 1  Let a focus of an ellipse be  F  and two points on the ellipse be  

A  and  B  such that  A ,  B  and  F  are collinear.  Two tangents of the 

ellipse passing through  A  and  B  are drawn.  If the point of intersection 

of the two tangents is  M ,  then  FM ⊥ AB . 

PROOF  Let the equation of the ellipse be  1
2

2

2

2

=+
b

y

a

x
  (a > b > 0).  Let  
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Let the coordinates of  A  and  B  be  (x1 , y1)  and  (x2 , y2)  

respectively.  Let  kA  and  kB  be the slopes of the tangents at  A  and  

B  respectively.  Then  kA = 
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Let  AF  = λ FB   (λ > 0) .  Since  AF  = (−c − x1 , −y1) ,  FB  =  

(x2 + c , y2) ,  −c − x1 = λx2 + λc ,  −y1 = λy2 .   

So  y1 = −λy2 ,  x1 = −λc − c − λx2 . (1) 
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2 = a2 b2 . (2) 
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According to  1
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 ,  we have   

 b2 λ2 x2
2 + a2 λ2 y2

2 = a2 b2 λ2 . (3) 

(2) − (3) : 2b2 c λ(1 + λ)x2 = a2 b2 − a2 b2 λ2 − b2 c2 λ2 − 2b2 c2 λ − b2 c2  

 2 c λ(1 + λ)x2 = a2(1 − λ2) − c2(1 + λ)2 

 2 c λx2 = a2(1 − λ) − c2(1 + λ) 

  = b2 − λ(a2 + c2) ,  as  a2 − c2 = b2 . 
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The equation of tangent at  A  is   
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Similarly, the equation of tangent at  B  is  y = 
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By (4) and (5), we have  x = 
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Combining (1) and (6), we can get  x = 
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Thus  M = (
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AB  = (x2 − x1 , y2 − y1) = (x2 + λ c + c + λ x2 , y2 + λ y2) = (1 + λ)(x2 + c , y2) . 

Then  FM ⋅ AB  = 
c
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− (1 + λ)(x2 + c) + 
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By (1), we know  x1 + λ x2 + c + c λ = 0 .  So  FM ⋅ AB  = 0 .   

Therefore,  FM ⊥ AB  and THEOREM 1 is proved.   

THEOREM 2  Let a focus of a hyperbola be  F  and two points on the 

hyperbola be  A  and  B  such that  A , B  and  F  are collinear.  Two 

tangents of the hyperbola passing through  A  and  B  are drawn.  If the 

point of intersection of the two tangents is  M ,  then  FM ⊥ AB . 

The proof of THEOREM 2 is similar to that of THEOREM 1.  So it is omitted. 

THEOREM 3  Let the focus of a parabola be  F  and two points on the 

parabola be  A  and  B  such that  A ,  B  and  F  are collinear.  Two 

tangents of the parabola passing through  A  and  B  are drawn.  If the 

point of intersection of the two tangents is  M ,  then  FM ⊥ AB . 

PROOF  Let the equation of the parabola be  x2 = 2py .   

Then we have  y = 
p
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p
)  and  y ' = 
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 . 

We put  A(x1 , y1) ,  B(x2 , y2) .  Let  kA  and  kB  be the slopes of the 

tangents at  A  and  B  respectively.  Then  kA = 
p

x1  ,  kB = 
p

x2  . 
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The equation of tangent at  A  is  y − y1 = 
p

x1 (x − x1) = 
p

x1 x − 
p

x 2
1  
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2
1 ,  y = 

p

x1 x − y1 . (7) 

Similarly, the equation of tangent at  B  is  y = 
p

x2 x − y2 . (8) 

By (7) and (8), we have  M = (
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Since  A ,  B  and  F  are collinear, there is a positive real number  λ  

such that  AF  = λ FB  .   

As  AF  = (−x1 , 2

p
− y1)  and  FB  = (x2 , y2 − 2
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) ,  we have   
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Thus  x2 = 
λ
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 .  Taking  x2 = 

λ
p

 ,  we have  x1 = −p λ . 

Hence  x1 x2 = −p 2 ,  x1 + x2 = 
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So  FM ⊥ AB .  Similarly, we also have  FM ⊥ AB  if  y 2 = 2px .  

Therefore, THEOREM 3 is proved. 
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Combining THEOREM 1, THEOREM 2 and THEOREMK 3, we can get: 

THEOREM 4  Let a focus of a conic section be  F  and two points on the conic 

section be  A  and  B  such that  A ,  B  and  F  are collinear.  Two 

tangents of the conic section passing through  A  and  B  are drawn.  If the 

point of intersection of the two tangents is  M ,  then  FM ⊥ AB .  

Furthermore,  M  is a point on the directrix of the conic section corresponding 

to the focus  F . 
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Editor’s Note 
Zhang Yun has stated and proved a very beautiful property in conic section which is not often 

mentioned in usual textbooks.  One of our reviewers has found a shorter way to prove this 

property and it is given as follows: 

Let  A(x2 , y2)  and  B(x3 , y3)  be two points lying on the ellipse  1
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M(x1 , y1)  be the intersection of the tangents at  A  and  B . 

Since the equation of the tangent at  A  is  1
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By similar argument,  B(x3 , y3)  also satisfies the equation  1
2
1

2
1 =+

b

yy

a

xx
 . 

As  1
2
1

2
1 =+

b

yy

a

xx
  is linear, it must be the equation of  AB .   

Let  F (c , 0)  be a focus of the ellipse.  (Then  c2 = a2 − b2 .) 

If  AB  passes through  F ,  we have  1
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Hence,  M  lies on a directirx of the ellipse.   
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 ,  as  c2 = a2 − b2 . 

Q slope of  AB  ×  slope of  MF = −1 , 

∴ FM ⊥ AB  


