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Some Theorems and Counter Examples on Differentiation  

 

Chu Lap-foo 

S.K.H. Lam Woo Memorial Secondary School  

In learning Advanced Level Pure Mathematics, some students are confused 

by the concept of differentiability of a function.  In this short article, two 

examples and two theorems are presented, which will be helpful to teachers in 

teaching the concept of differentiability of a function. 

Consider the following standard question: 

Let  f (x) = 3

1

x  .  For  x  0 ,  find  f '(x)  and prove that  f '(0)  does 

not exist.  

For the first part, students can easily write down the correct answer  f '(x) 

= 
3

2

3

1 
x .  But in the second part, some students may give a proof like: 

 
3
2

3

1
lim

0




x

x
 =  , 

 f '(0)  does not exist. 

The above proof is not appropriate because the student only prove that  

0
lim
x

 f '(x)  does not exist.  This leads to the following questions:  Is there 

any relation between  
ax

lim  f '(x)  and  f '(a) ?  Can the existence of one 

imply the existence of the other?  Furthermore, if both exist, are they 

necessarily the same? 

First, let us consider the case when  
ax

lim  f '(x)  exists. 

Counter Example 1  There is a function  f (x)  for which  
0

lim
x

 f '(x)  exists 

but  f '(0)  does not exist. 
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Consider the function  f (x) = 










0  when  ,1

0  when  ,

2

2

xx

xx
 .  It is not difficult 

to see that  
0

lim
x

 f '(x) = 0  and  
0

lim
x

 f '(x) = 0 , thus  
0

lim
x

 f '(x) = 0 .  

However  f '(0)  does not exist as this function is not continuous at  x = 0 . 

But if  f (x)  is continuous at  x = 0  and  
0

lim
x

 f '(x)  exists, are we 

sure that  f '(0)  exists?  The answer is yes, which is the following theorem, a 

question taken from the book by Apostol: 

Theorem 1  Let  f (x)  be continuous on  (a , b)  with finite derivative   

f '(x)  everywhere in  (a , b) , except possibly at  c .  If  
cx

lim  f '(x)  exists 

and has the value  A ,  then  f '(c)  must also exist and have the value  A . 

Proof  For any  x  (a , c) ,  using the mean value theorem, we have a    

(x , c)  such that  
cx

cfxf



 )()(
 = f '() ,  so  

cx

cfxf

cx 




)()(
lim  = A ,  i.e.  

f'(c) = A . 

Similarly, we can prove that  f+'(c) = A  and hence  f '(c) = A . 

Counter Example 2  There is a function  f (x)  for which  f '(0)  exists but  

0
lim
x

 f '(x)  does not exist,  i.e.  f (x)  is a differentiable function but  f '(x)  

is not continuous. 

Consider the function  f (x) = 












0  when  ,0

0  when  , 
1

sin3
4

x

x
x

x
 .   

From the first principles, we have  f '(0) = 0 .   

But for  x  0 ,  f '(x) = 
x

x
x

x
1

cos
1

sin
3

4
3

2

3

1 
  ,  clearly  

0
lim
x

 f '(x)  

does not exist. 
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Lastly, let us end our discussion by giving the following result, which can 

be considered as a corollary of the theorem 1: 

Theorem 2  Assume that  f (x)  has a finite derivative at each point of the 

open interval  (a , b) .  Assume also that  
cx

lim  f '(x)  exists and is finite for 

some interior point  c .  Then the value of this limit must be  f '(c) . 

From this theorem, we can see that if both  
ax

lim  f '(x)  and  f '(a)  exist, 

they must be the same. 

It is hope that the above counter examples and theorems can help the 

students to better understand the concepts of “differentiable” and “continuously 

differentiable”. 
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