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Contemporary discussions of goals for mathematics education emphasize 
the importance of thinking, understanding, reasoning, and problem solving (e.g., 
National Council of Teachers of Mathematics, 2000).  A major goal of 
mathematics instruction is to help students develop their reasoning skills and 
gain confidence to reason logically and mathematically.  Students should learn 
that reasoning is fundamental to an understanding of and doing mathematics, 
and that logical reasoning is the way in which the validity of a mathematical 
assertion is ensured.  One of the ways to reason logically is to construct proofs 
using indirect methods.  Although indirect reasoning is a classic topic, the 
inherent mathematical structure and reasoning in the Standards requires this 
topic to be given greater importance in the curriculum (NCTM, 1989).  
Indirect reasoning is fundamental for doing mathematics at all levels.  It is also 
an important idea and approach for conducting research in subject areas such as 
engineering and science (Maud, 1987).  In many cases, use of an indirect proof 
can provide much more effective mathematical arguments and communication 
than the use of a direct proof. 

However, research shows that a majority of the high school students and 
preservice teachers do not understand the meaning of indirect proof.  For 
example, in the evaluation study of Precalculus and Discrete Mathematics from 
the University of Chicago School Mathematics Project, Thompson (1994) found 
that less than 20% of the students who took Precalculus and Discrete 
Mathematics from nine participating high schools selected correct answers on 
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items involving indirect proof.  In another study, Williams (1979) investigated 
a group of 255 eleventh grade students’ understanding of the nature of proof and 
found that more than 70% of his sample did not understand indirect proof.  
Many teachers’ understanding of an indirect proof is something related to √2.  
When they were asked how an indirect proof is related to √2, a majority of them 
indicated that the use of an indirect proof demonstrated the irrationality of √2.  
However, when they were asked to actually construct an indirect proof of the 
irrationality of √2, many teachers had difficulty in getting started. 

Although NCTM (1989, 2000) suggests that only college-bound students 
need to have experiences in proving mathematical assertions using indirect 
proof, mathematics teachers should understand the nature and logic of an 
indirect proof.  In order to help school students construct a proof using indirect 
reasoning, teachers not only need to know the logic and principles underlying 
an indirect proof but also need to know how to teach students to learn and apply 
such techniques.  We need to seek innovative alternatives to help preservice 
teachers understand the indirect proof mathematically and pedagogically. 

The purpose of this article is to discuss a problem-based learning approach 
to make an indirect proof meaningful to preservice secondary mathematics 
teachers.  According to the constructivist perspective of learning mathematics, 
learning is an individual process and each individual responds to learning 
situations in terms of the meaning he/she has for them (Cobb, 1994).  Learners 
need to experience a constructive process based on his or her own thinking. 
Using a problem-based learning approach, they actively participate in the 
processes of knowledge construction and, therefore, make sense of the 
reasoning processes involved in indirect reasoning in his or her own terms.  
They become active participants in the creation of knowledge rather than 
passive receivers of rules and procedures of indirect reasoning.  The processes 
and meaning of indirect reasoning are introduced through problems derived 
from the learners’ familiar world.  According to the social perspective of 
learning mathematics, on the other hand, learners become acculturated by 
participating in cultural practices.  Learning, in this perspective, is a social 
process in which each individual learns mathematics through social interaction, 
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meaning negotiation, and reaching shared understanding.  Problem-based 
learning approach provides a natural setting for individuals to learn mathematics 
through social interactions.  As they explain and justify their thinking and 
challenge the explanations of others, they are also engaging in clarification of 
their own thinking and becoming owners of “knowing.”  

In this article, the discussion of the problem-based learning approach to 
make an indirect proof meaningful to preservice secondary mathematics 
teachers is also based on our experience working with preservice teachers in the 
past several years and is illustrated using specific activities and examples.  The 
following two assumptions guided the design of activities and examples: (1) We 
need to use familiar and friendly problems in order to build up preservice 
teachers’ informal ideas of indirect reasoning before the indirect proof is 
formally introduced; and (2) Once they build up informal ideas, they need to 
establish the principles and structures of indirect proof. 

Building Informal Ideas of Indirect Proof 
An individual’s current knowledge structure and mental representations 

play a central role in learning and understanding (Cobb, 1994).  Preservice 
teachers have difficulty with the formal structure of an indirect proof before 
they become familiar with the ideas in indirect proof.  Because of the 
“indirect” nature, many teachers and students became frustrated with the 
indirect proof method (Leron, 1985).  Thus, we need to build preservice 
teachers’ indirect reasoning ideas using friendly and familiar problem situations.  
In fact, we all encounter indirect reasoning all the time in our daily lives.  The 
arguments in the following scenarios are examples of using indirect reasoning.  
They were presented with the following cases and were asked to discuss and 
explain the reasoning involved. 

Case 1. John and Mary are sitting in a library. 
 John:  I’ve heard from TV that it might be raining today. 
 Mary: It must be raining right now.  If it were not raining, then 

people coming into the library would be dry, but they are wet. 
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Case 2. John and Mary drove past a football stadium. 
 John: Is there any game in this stadium right now? 
 Mary: I don’t think so.  If a game were being played right now, the 

parking lots would be full of cars, but there are no cars in the lots. 

In each case, Mary argued that a certain thing is true.  In the first case, she 
argued that “It is raining right now.”  In order to make this argument, Mary 
begins by supposing it is not raining.  This assumption leads to the conclusion 
that people coming into the library would be dry based on common sense.  
This conclusion contradicts the reality that people coming into the library are 
wet.  The contradiction resulted from the fact that Mary assumed it was not 
raining.  Thus, the assumption that it is not raining must be wrong.  Similarly, 
in the second case, Mary argues that “there is no football game in the stadium 
right now” by supposing that there is a football game in the stadium.  Using 
common sense, if there is a game, the parking lots would be full of cars.  This 
leads to a contradiction since there are no cars in the lots.  Therefore, the 
supposition must be incorrect and there is not a football game in the stadium 
right now. 

After the discussion, these preservice teachers began formulating ideas of 
indirect reasoning involved in these two examples.  Then teachers can move 
further by proposing the following problem, which is modified from a classical 
problem used in problem solving research (Rubinstein, 1975). 

A woman with her three children met a man at an apartment building. 
Woman: “Hi, have not seen you for a long time, how are you?” 

Man: “Good to see you.  That’s right!  Have not seen you for a while.  
Look, your children have grown up so quickly.  How old are they now?” 

Woman: “The product of their ages is 36.” 

Man: “Come on, that does not give me enough information to know their 
ages.” 

Woman: “The sum of their ages is the same as your apartment number.” 

Man: “That still does not give me enough information.” 
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Woman: “My oldest child has red hair.” 

What are the ages of this woman’s three children? 

Preservice teachers were divided into groups of 3 to work on this problem.  
Since the product of the children’s ages is 36, they quickly realized that there 
are several possibilities for their ages, including (36, 1, 1); (18, 2, 1); (12, 3, 1), 
(9, 4, 1); (9, 2, 2); (6, 6, 1), (6, 3, 2), and (4, 3, 3).  What puzzled them was the 
fact that the man’s apartment number was unknown.  Several groups of 
teachers even asked for the man’s apartment number.  However, they did not 
get an answer to that question.  Instead, they were asked a question: “Why do 
you have to know the man’s apartment number?”  One of the preservice 
teachers responded, “If we know the man’s apartment number, then we will 
know their ages since the sum of their ages is the same as the man’s apartment 
number.” 

The group discussion seemed to inspire their thinking.  Possibilities for 
their ages are (36, 1, 1); (18, 2, 1); (12, 3, 1), (9, 4, 1); (9, 2, 2); (6, 6, 1),  
(6, 3, 2), and (4, 3, 3).  Moreover, according to the woman, the sum of the 
three ages is the same as the man’s apartment number.  36 + 1 + 1 = 38.   
18 + 2 + 1 = 21.  12 + 3 + 1 = 16.  9 + 4 + 1 =14.  9 + 2 + 2 = 13.   
6 + 6 + 1 =13.  6 + 3 + 2 =11.  4 + 3 + 3 = 10.  They realized that the 
apartment number could be 38, 21, 16, 14, 13, 11, or 10.  Discussions 
continued.  After about 25 minutes, one student suddenly spoke loudly: 
“Indirect reasoning! Indirect reasoning.  I think I’ve got it.”  Then she 
explained her thoughts to her group and everybody seemed to be convinced.  
Other groups also tried to use indirect reasoning to solve the problem and made 
some progress.  There were only five minutes left for the class.  They were 
called together for class discussion.  One of the members from the group that 
figured out the problem first was asked to share the solution. 

In their solution, indirect reasoning played an important role.  Using 
indirect reasoning, they eliminated the possibilities of the apartment number as 
38, 21, 16, 14, 11, and 10.  For example, the teacher reasoned as follows: If the 
man’s apartment number is 11, then the sum of their ages is equal to 11, which 
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can only result from the fact that the ages of the three children are 6, 3, and 2.  
Therefore, the man would have known the ages of the three children after the 
woman told him that the sum of their ages is the same as his apartment number.  
However, the man said he still did not have enough information to know their 
ages (a contradiction).  That means the assumption that the man’s apartment 
number is 11 is incorrect.  In other words, the sum of the three ages is not 11.  
Using the same reasoning, the man’s apartment number could not be 14 either.  
If the apartment number is 14, then the sum of the three ages is equal to 14  
(= 9 + 4 + 1).  After the woman told him that the sum of their ages is the same 
as his apartment number, the man would have known the ages of the three 
children.  This contradicts the fact that the man said he still did not have 
enough information to know their ages.  Therefore, the sum of the three ages is 
not equal to 14.  Similarly, the sum of the three ages is not equal to 21 or 38.  
Naturally, since the sum of the three ages is not equal to 38, 21, 16, 14, 11, or 10, 
the sum of the three ages must be 13.  Thus, there are two possibilities for their 
ages: (9, 2, 2) or (6, 6, 1).  According to the woman, her oldest child has red 
hair.  That means that her oldest children would not be twins.  Therefore the 
ages of her three children are 9, 2, and 2, respectively. 

The explanation of the solution was very convincing.  In this explanation, 
use of indirect reasoning was essential to eliminate all but one of the 
possibilities.  To reinforce preservice teachers’ understanding of the indirect 
reasoning, we modified the problem and asked each student to work on the 
variations as homework.  The solution processes are very similar to the 
original problem.  The idea is to use indirect reasoning to eliminate 
possibilities. 

Variation 1: A woman with her three children met a man at an apartment 
building.  Woman: “Hi, have not seen you for a long time, how are you?” 

Man: “Good to see you.  That’s right!  Have not seen you for a while.  
Look, your children have grown up so quickly.  How old are they now?” 

Woman: “The product of their ages is 72.” 

Man: “Come on, that does not give me enough information to know their 
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ages.” 

Woman: “The sum of their ages is the same as your apartment number.” 

Man: “That still does not give me enough information.” 

Woman: “My oldest child has red hair.” 

What are the ages of this woman’s three children? 

Variation 2: A woman with her three children met a man at an apartment 
building.  Woman: “Hi, have not seen you for a long time, how are you?” 

Man: “Good to see you.  That’s right!  Have not seen you for a while.  
Look, your children have grown up so quickly.  How old are they now?” 

Woman: “The product of their ages is 36.” 

Man: “Come on, that does not give me enough information to know their 
ages.” 

Woman: “One of their ages is the same as your apartment number.” 

Man: “That still does not give me enough information.” 

Woman: “My oldest child has red hair.” 

What are the ages of this woman’s three children?  

Principles of Indirect Proof 
It is not enough for preservice teachers to simply have some ideas of using 

indirect reasoning.  They also need to know the underlying logic.  In general, 
any statement is either true or false.  For example, in the first case we 
introduced earlier, the statement is “It is raining right now.”  This statement is 
either true (i.e., consistent with the real fact that it is raining), or false (i.e., it is 
not raining).  It is impossible to have both “raining” and “not raining” at the 
same time.  The principles of an indirect proof are based on the following:  
(1) Every statement is either true or false (the Law of the Excluded Middle) and 
(2) No statement can be both true and false (the Law of Noncontradiction).  
These laws imply that if a statement is true, then the negation of the statement 
must be false, or vice versa.  Therefore, in order to prove a statement is true, it 
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is only necessary to prove that the negation of the statement is false.  In order 
to prove the negation of the statement is false, on needs to show that a 
contradiction results from assuming the negation of the statement is true. 

For example, Mary wanted to justify that the statement “It is raining right 
now” is true.  The negation of the statement is “It is not raining right now.”  
She first assumed that it is not raining.  If it is not raining, then people who 
come into the library would not be wet.  This contradicts the fact that people 
coming into the library are wet.  Therefore, the negation of the statement “It is 
not raining right now” is false.  Thus, the statement “It is raining right now” is 
true. 

They were also introduced to some quotations from Sherlock Holmes.  
Holmes often used indirect reasoning to solve mysteries (Ballew, 1994).  The 
principle he used is the following: With a finite number of possibilities, if we 
eliminate all but one of the possibilities, then the one which remains, no matter 
how improbable, must be the truth.  This idea was illustrated in the previous 
Three Children Problem.  There are seven different possibilities for the sum of 
the three children’s ages.  When 10, 11, 14, 16, 21, and 38 were eliminated, 
then the sum of the children’s ages had to be 13.  Students discovered that the 
principles used in this example are the same as those used in the library scenario.  
The only difference between the two examples is that in the Three Children 
Problem there are seven possibilities, and there are only two possibilities in the 
“rain” problem (either raining or not raining). 

Structures of Indirect Proof 
After teachers discussed and learned the principles underlying indirect 

reasoning we turned to discuss the structure of an indirect proof.  We used the 
irrationality of √2 to illustrate and discuss the structure in an indirect proof.  
This example was particularly appropriate because: (1) Teachers were more or 
less familiar with the connection between indirect proof and √2; and (2) We 
were able to use this opportunity to overcome preservice teachers’ 
misconceptions of indirect proof.  Teachers were also separated into groups of 
3 and asked to write a detailed convincing proof that “√2 is not a rational 
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number.”  Each group was also asked to identify, analyze, and describe 
structures of the indirect proof. 

Generally, each group was now able to justify that √2 is not a rational 
number using indirect proof.  Therefore, class discussion was focused on 
important phases in the use of an indirect proof.  The discussion was especially 
effective with the specific examples.  Through discussion, the preservice 
teachers were able to identify the following five important phases of an indirect 
proof: Orientation, Assumption, Conclusion, Contradiction, and Verification. 

Orientation.  In an indirect proof, an individual first has to understand the 
problem.  Proof is a specific kind of problem solving.  It requires 
comprehension of what is given and what needs to be proved.  In particular, an 
individual has to identify the statement that needs to be proved.  In some cases, 
what has to be proved is very straightforward.  In the example of the 
irrationality of √2, what needs to be proved is very clear: Prove √2 is not a 
rational number.  However, some problems are not always so straightforward, 
such as in the example of the Three Children Problem. 

Assumption.  After the statement which is to be proved is identified, an 
assumption needs to be made.  The assumption is the negation of the statement 
that has to be proved.  For example, in the case of the irrationality of √2, the 
assumption is that “√2 is a rational number.” 

Conclusion.  Once the assumption is made, then one starts to make a 
series of inferences and reasoning which lead to a conclusion.  For example, if 
√2 is a rational number, then √2 can be expressed as a/b where a and b are 
positive whole numbers, b ≠ 0, and a and b are reduced without a common 
factor other than 1.  That is, √2 = a/b.  If we square both sides, we have  
2b2  = a2.  This implies that a2 has a factor of 2.  Therefore, a has a factor of 2.  
We can then write a = 2n (n is a positive whole number).  Thus, we have 2b2 = 
4n2, i.e., b2 = 2n2.  In the same way, it follows that b has a factor of 2.  Thus 
the conclusion is: a and b both have a factor of 2. 

Contradiction.  The fourth phase in an indirect proof is to find a 
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contradiction.  Usually, the contradiction is found between a known fact or 
information and the conclusion resulting from the assumption.  In the example 
of irrationality of √2, the conclusion is that a and b both have a common factor 
of 2, which contradicts the assumed fact that a and b are reduced without a 
common factor other than 1. 

Verification.  The last phase in an indirect proof is to state the conclusion 
after a contradiction is found.  Because of the contradiction, the assumption 
that √2 is a rational number must be false.  Thus, we have provided a valid 
argument that √2 is not a rational number. 

A through discussion of the phases of indirect proof was helpful for 
preservice mathematics teachers in their understanding of the principles of an 
indirect proof and forming the mental models of indirect proof.  Many teachers 
indicated that they became more comfortable about introducing the indirect 
proof to their students.  We also asked preservice teachers to construct an 
indirect proof of the irrationality of √3 based on the five phases discussed 
above. 

Direct and Indirect Proofs 
After they discussed and understood the principles and structures of 

indirect proof, a natural question many preservice teachers asked was: “What do 
I tell my students when to use direct proof and when to use indirect proof?”  
There is no definite answer to this question.  Like working forwards and 
working backwards, there are no definite rules on when to use a particular 
strategy.  However, a general rule is that when one has been unable to find a 
direct proof or a direct proof is very time-consuming, we frequently turn to an 
indirect proof.  For example, it would be almost impossible to use a direct 
proof to prove that √2 is an irrational number. 

In other cases, one can use either a direct or an indirect proof, but an 
indirect proof may be more communicable.  In this direction, teachers found 
the following problem enlightening: “Let a1, a2, a3, a4, …, a(2n+1) be an 
arrangement of the numbers 1, 2, 3, 4, …,  (2n + 1).  Show that the product of 
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(1 − a1)(2 − a2)(3 − a3)(4 − a4) … [(2n + 1) − a(2n+1)] is even.”  We can  
use both direct and indirect proofs to show that the product of  
(1 − a1)(2 − a2)(3 − a3)(4 − a4) … [(2n + 1) − a(2n+1)] is even.  Preservice 
teachers were asked to provide both direct and indirect proofs for this problem. 

Direct proof.  For the product to be even, at least one factor must be even.  
Every number is either even or odd.  Totally, there are four possibilities for 
each difference:  (1) odd – odd = even, (2) odd – even = odd,  
(3) even – odd = odd, and (4) even – even = even.  Only for odd – even or 
even – odd does one get odd differences.  Since we have a total of (2n+1) 
numbers, with n even numbers and (n+1) odd numbers, we cannot have all 
even – odd or odd – even.  Therefore, one of the differences must be either 
odd – odd or even – even.  This means that one of the differences must be even.  
Thus the product of (1 − a1)(2 − a2)(3 − a3)(4 − a4) … [(2n + 1) − a(2n+1)] is even. 

Indirect proof.  The statement we need to prove is that the product of  
(1 − a1)(2 − a2)(3 − a3)(4 − a4) … [(2n + 1) − a(2n+1)]  is even (orientation).  
Let’s assume the product of (1 − a1)(2 − a2)(3 − a3)(4 − a4) … [(2n + 1) − a(2n+1)] 
is not even (assumption).  Then each difference term must be odd. 

That is  (1 − a1) = odd number 
 (2 − a2) = odd number 
 (3 − a3) = odd number 
 (4 − a4) = odd number 
  …… 
 (2n + 1) − a(2n+1) = odd number 

If we add terms on the left side of the equal sign together and add terms on the 
right side of the equal sign, then they should still be equal.  That is  
(1 − a1) + (2 − a2) + (3 − a3) + (4 − a4) + … + [(2n + 1) − a(2n+1)] =  
odd + odd + odd + … + odd.  That is, 0 = the sum of (2n +1) odd numbers.  
Since the sum of the (2n + 1) odd numbers is equal to an odd number, we have 0 
= an odd number (conclusion).  This conclusion itself contains a contradiction 
because 0 is not equal to an odd number (contradiction).  Therefore, our initial 
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assumption that the product of (1 − a1)(2 − a2)(3 − a3)(4 − a4) … [(2n + 1) − 
a(2n+1)] is not an even number is incorrect.  Thus, we proved that the product of 
(1 − a1)(2 − a2)(3 − a3)(4 − a4) … [(2n + 1) − a(2n+1)] is even (verification). 

After they had done this problem, many preservice teachers felt that 
indirect proof appeared to be more “direct” than direct proof.  Using direct 
proof, they seemed to have difficulty making explicit arguments.  Interestingly, 
they felt that the following argument was not explicit and convincing:  Since 
we have a total of (2n+1) numbers, with n even numbers and (n+1) odd 
numbers, we cannot have all even – odd or odd – even.  Therefore, one of the 
differences must be either odd – odd or even – even.  However, by using an 
indirect proof, they felt they had a good handle on each phase of the proof.  
Each step seemed to be very explicit and convincing. 

This example showed them the value of indirect proof.  In particular, this 
example suggests that proving √2 is an irrational number is not the only place to 
use indirect reasoning.  Since we learn mathematics if we are actively engaged 
in creating not only solution strategies but problems that require certain 
techniques (Moses, Bjork, & Goldenberg, 1990), we asked preservice teachers 
to design mathematical and non-mathematical problems which make use of an 
indirect proof.  Here are a few examples: 

Example 1: The numbers 1 through 9 can be placed into a 3 by 3 square board 
so that the sum of the numbers in each row, column, and diagonal is 15.  Prove 
that 9 cannot be placed on the up-right corner. 

Example 2: n is an integer.  If  n2  is an odd number, n must be an odd 
number. 

Example 3: In a triangle, there is one and only one altitude to each side. 

In addition, they were also provided opportunities to evaluate various 
“proofs” to a mathematical statement.  They were asked to judge if each of 
the proposed proofs is correct.  If a proof is incorrect, they are asked 
to provide a correct proof.  If it is correct, they are asked to provide 
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the logic behind for the given proof.  This kinds of activities 
facilitated their understanding of what constitutes a proof and how 
one constructs a direct or indirect proof.  Below is an example. 

Example: Consider the following statement:  Let m be an integer.  If m is 
even, then m2 is even.  A group of college freshmen proposed the following 
proofs.  Evaluate if each of these proposed proofs is correct.  If a proof 
is incorrect, please provide a correct proof.  If it is correct, please 
provide the logic behind for the given proof. 

Proposed proof 1:  Assume m is not even.  Then m is odd.  Thus, there exists 
an integer k such that m = 2k +1.  Therefore, m2 = (2k + 1)2 = 4k2 + 4k + 1, 
which is odd.  Thus if m is odd, then m2 is odd.  Therefore, If m is even, then 
m2 is even. 

Proposed proof 2: Since m is even, when m = 2, 22 = 4, which is even.  When 
m = 4, 42 = 16, which is even.  When m = 6, 62 = 36, which is even.  
Therefore, if m is even, then m2 is even. 

Proposed proof 3:  Since m is even, it can be expressed as m = 2k (for some 
integer k).  m2 = (2k)2 = 4k2.  Since 4k2 is even, m2 is always even when m is 
even. 

Proposed proof 4: If m2 is not even, then m2 is odd.  Therefore m2 can be 
expressed as m2 = 2b + 1 for some integer b.  m2 − 1 = 2b.  (m − 1) (m + 1) = 
2b.  Since m is even, it follows that (m − 1) is odd and (m + 1) is odd.  Thus, 
(m − 1) (m + 1) is odd, which contradicts the fact that  (m − 1) (m + 1) = 2b, 
which is even.  Therefore, m2 must be even. 

Proposed proof 5: If n is even, n can be written as n = 2m for some integer m.  
n2 = (2m)2 = 4m2 .  Therefore, n2 is even.  This contradicts with the fact that 
n2 is odd.  Thus, n2 must be odd. 

Conclusion 
It is necessary mathematics teachers to understand the meaning of indirect 

reasoning.  A problem-based learning approach seems to be effective for 
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making indirect reasoning accessible to preservice teachers.  Preservice 
teachers are able to learn and understand indirect reasoning by examining 
problem situations from everyday life and mathematics itself in which such 
reasoning is consciously or unconsciously used.  Preservice mathematics 
teachers have experienced the success to transfer such activities to a higher 
plane of mathematical thoughts in which conjectures are verified or 
counterexamples are constructed. 
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