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On Euler’s formula 
 

OR Chi Ming   Munsang College 
 

When teaching the general solution of the linear, homogeneous, 
second-order differential equation 
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where a, b, c are constants with b2 − 4ac < 0, many teachers face a problem of 
using Euler’s formula 

θ+θ=θ sincos iei  
to simplify the general solution from xiqpxiqp BeAey )()( −+ +=   to 

, where p±qi are the complex roots of the auxiliary 
equation aλ

)sincos( qxDqxCey px +=
2 + bλ + c = 0. The difficulty is that Euler’s formula involves 

complex variables and is usually proved using Taylor’s series which is 
unfamiliar to sixth-form students. The following suggests a simple way of 
establishing the validity of Euler’s formula. 
 
 Let θ+θ= sincos iy . Then 
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 Therefore y satisfies a simple first order differential equation  
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 Since when 0=θ , 10sin0cos =+= iy , we have 1=C . 
     θ=∴ iey  
  i.e. θ=θ+θ iei sincos  
 
 As stated by Mr. Cheung Pak Hong in [1], students may be puzzled by the 
complex variables involved in Euler’s formula. To help the students understand 
Euler’s formula better, teachers can remind the students that the function f (θ) = 
cos θ + i sin θ satisfies the special property that for all θ and φ, 
 
   f(θ)f(φ) = (cos θ + i sin θ)(cos φ + i sin φ) 
     = (cos θ cos φ − sin θ sin φ) + i (sin θ cos φ + cos θ sin φ) 
     = cos (θ + φ) + i sin (θ + φ) 
     = f (θ + φ) 

 
Note that the exponential function f(x) = ax (a is a constant) satisfies this 
property, and it is therefore sensible to say that f(θ) = cos θ + i sin θ  is an 
exponential function. In fact it can be proved that if a function f is non-zero, 
differentiable and f(x + y) = f(x) f(y) for all x and y, then f(x) = eαx  where    α 
= f ′(0) (See [2] or [3]).  
 
 Note that if teachers and students are still uncomfortable of using complex 
numbers to find the real solutions of a real differential equation, they could be 
satisfied by a method suggested by Mr. Cheung Pak Hong in [1]. This method 
has the advantage of not using complex numbers, but at the price of losing the 
convenience and efficiency of solving (1) by auxiliary equations. 
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